REVIEW ARTICLE

TERATOGENICITY AND EMBRYOTOXICITY OF ORGANOPHOSPHORUS COMPOUNDS IN ANIMAL MODELS - A SHORT REVIEW

Syed M Nurulain and M Shafiullah

Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, UAE University, Al Ain, UAE. P.O.Box 17666, Al Ain, UAE

Received 9th December 2011.
Revised 12th February 2012.
Published 9th March 2012.

Summary

Organophosphorus compounds (OPCs) are a wide group of compounds both structurally and functionally. Each OPC has a unique toxicological profile. The exposure to this type of poison is not limited only to certain occupationally exposed people but also to children, women, pregnant women; all have chances to be exposed to this poison. During the recent past years it has been reported in many poison epidemiological studies and case reports that exposure of OPCs during pregnancy caused malformed fetuses, neural tube defect (NTD) and shortening of pregnancy. The literature for animal models reveals inconclusive evidence. The generalized view is that they are neither teratogenic nor embryotoxic. But it is not true. There is a lack of systematic study and scarcity of reports on the topic. The present study was undertaken to investigate the teratogenicity induced by organophosphorus compounds in different animal models by literature review. Literature was searched by Toxicology Data NetWork (TOXNET), Developmental and Reproductive Toxicology Database (DART), Toxicology Literature Online (TOXLINE), Hazardous Substances Data Bank (HSDB), Pubmed Central, Entrez-Pubmed, Science Direct, Directory Of Open Access Journal (DOAJ), Google Scholar and International Program on Chemical Safety (IPCS-INCHEM), Embase. The terms for literature search were teratogenicity, organophosphorus compounds; fetal toxicity, organophosphorus compounds; organophosphorus poisoning and pregnancy; organophosphorus poisoning and growth restriction; organophosphorus poisoning and IUGR; organophosphorus poisoning and reproduction; organophosphates and reproduction; pregnancy and organophosphates. The outcome of the study concludes that the work on teratogenicity induced by organophosphorus compounds was completely neglected, inconclusive, and only carried out on less than half of the OPCs available in the market. A more comprehensive and systemic study on the subject is clearly needed and its importance should not be ignored because more positive cases are being reported on the teratogenicity and embryotoxicity of OPCs.

Key words: IUGR; fetotoxicity; teratogenicity; Resorption; organophosphorus compound (OPC); embryotoxicity; organophosphates.

INTRODUCTION

Over hundred different OPCs are available in the market as insecticides, pesticides, miticides, acaricides etc. and to a smaller extent herbicides and fungicides [1]. These are the most commonly used
Compounds all over the world in houses, farm houses and agriculture fields. Over the last 100 years, the use of organophosphorus compounds has dramatically increased with new applications still being developed. OP pesticides are used for public health purposes to control disease vectors. Human food contamination by organophosphates mostly occurs to farmers and agriculture workers [2]. Studies have shown an increased exposure to pesticides by women and children and suggest an association between environmental exposure to certain agricultural pesticides like OPCs and adverse reproductive outcomes in men and women working on or living near farms [3]. Many studies have shown that working in agriculture increases the risk of neural tube defect (NTD). Elevated risks of NTDs and anencephaly or spina bifida subtypes were also associated with exposures to organophosphorous pesticides. These results suggest that ambient exposure to certain categories of agricultural pesticides may increase the risk of NTDs [4,5]. The exposure of organophosphorus compounds and other toxicants to pregnancy is an important entity because of its effect on two organisms – a mother and a fetus.

Briefly, all sections of population, including women, children and even developing fetuses are unknowingly and unintentionally exposed to lethal and sub lethal doses of OPCs and other toxicants. Organophosphates (OP) have shown the ability to penetrate the placental barrier and thus could potentially affect the developing fetus. Pesticides like OP have been detected in amniotic fluid, umbilical cord blood, (Umbilical cord blood is blood that remains in the placenta and in the attached umbilical cord after childbirth. It is a reservoir of stem cells which can be used to treat hematopoietic and genetic disorders), meconium and infant urine, indicating exposure of the human fetus to pesticides [6-9].

During the past few years, a good number of epidemiological studies have been conducted to show the exposure of OPCs and other compounds to pregnant women and their consequences but there is paucity of literature on animal models for the effect of OPCs during different stages of pregnancy. Eskenazi et al. [10] suggested that high OP pesticides level might adversely affect duration of gestation. Peiris-John et al. [11] found the evidence of impairment of fetal growth and development brought about by prenatal exposure to OPCs. Similar effect was noted with parathion [12, 13].

The present study was carried out to investigate the available evidences of organophosphorus acetylcholinesterase (AChE) inhibitor induced teratogenicity in an animal model. It is obvious that over hundreds of different kinds of OPCs are available in the market but there is no clear evidence of teratogenicity and embryotoxicity of all or almost all OPCs. Concern related to this issue is addressed in this short review.

Table 1. Key words for search and results on different search engines.

<table>
<thead>
<tr>
<th>Key words for search</th>
<th>DART</th>
<th>HSBD</th>
<th>TOXLINE</th>
<th>Academic Search complete</th>
<th>Entrez Pubmed</th>
<th>Science Direct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teratogenicity, organophosphorus compounds</td>
<td>Total retrieved</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>related</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Fetal toxicity, organophosphorus compounds</td>
<td>Total retrieved</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>related</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Organophosphorus poisoning and pregnancy</td>
<td>Total retrieved</td>
<td>6</td>
<td>77</td>
<td>28</td>
<td>423</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>related</td>
<td>3</td>
<td>40</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Organophosphorus poisoning and growth restriction</td>
<td>Total retrieved</td>
<td>0</td>
<td>24</td>
<td>1</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>related</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Organophosphorus poisoning and IUGR</td>
<td>Total retrieved</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>related</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Teratogenic organophosphorus compounds</td>
<td>Total retrieved</td>
<td>27</td>
<td>163</td>
<td>97</td>
<td>54</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>related</td>
<td>11</td>
<td>93</td>
<td>24</td>
<td>4</td>
<td>66</td>
</tr>
<tr>
<td>Pregnancy and organophosphates</td>
<td>Total retrieved</td>
<td>181</td>
<td>124</td>
<td>315</td>
<td>158</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>related</td>
<td>20</td>
<td>38</td>
<td>33</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

Note: For each key search word, the first row shows the total retrieved and the second row reveals the related literature found. However, it is noteworthy that further screening of related literature reduced the number of relevant literature and it is not more than thirty in any maximum retrieval.
Table 2. List of OPCs and reported teratogenic effect.

<table>
<thead>
<tr>
<th>S.No</th>
<th>Chemical</th>
<th>Class</th>
<th>Uses</th>
<th>Reference</th>
<th>Model</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acephate</td>
<td>III insecticide</td>
<td>[4,28], HSDB</td>
<td>mice, rats</td>
<td>Conflicting</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Azinphos methyl</td>
<td>III insecticide</td>
<td>HSDB, INCHEM</td>
<td>rats and rabbits</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Bromoprop</td>
<td>III insecticide</td>
<td>[34], HSDB, INCHEM</td>
<td>rats and rabbits</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Chlorpyrifos</td>
<td>II insecticide</td>
<td>HSDB</td>
<td>rabbit</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Diazinon</td>
<td>II insecticide</td>
<td>HSDB</td>
<td>cattle</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Chlorpyrifos</td>
<td>III insecticide</td>
<td>[36-41], HSDB</td>
<td>rats, mice</td>
<td>Conflicting</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Chlorpyrifos-methyl</td>
<td>III insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Demeton</td>
<td>II insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>DFP</td>
<td>NA insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Diazinon</td>
<td>III insecticide</td>
<td>[42,43], HSDB, INCHEM</td>
<td>rabbit, hamster</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Dicofol</td>
<td>II insecticide</td>
<td>[50-56], HSDB, INCHEM</td>
<td>rats, rabbit</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Dibutyl</td>
<td>IA insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Ethoprop</td>
<td>IA insecticide</td>
<td>[52], HSDB</td>
<td>mice, duck, mallard</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Ethion</td>
<td>II insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Fenamiphos</td>
<td>OB insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Fenitrothion</td>
<td>II insecticide</td>
<td>[60], HSDB, INCHEM</td>
<td>rabbit, hamster</td>
<td>Conflicting</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Flupyrazofos</td>
<td>OB insecticide</td>
<td>[61]</td>
<td>mice, rats, rabbit</td>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Isocarboxazid</td>
<td>OB insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Isofenfos</td>
<td>OB insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Jodfenfos</td>
<td>OB insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Leptophos</td>
<td>III insecticide</td>
<td>[62-65], INCHEM</td>
<td>rats, rabbit</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Mevinphos</td>
<td>III insecticide</td>
<td>[66], HSDB</td>
<td>rats, rabbit</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Monuron</td>
<td>II insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Naled</td>
<td>II insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Oxydemeton-methyl</td>
<td>IB insecticide</td>
<td>[34,68], HSDB, INCHEM</td>
<td>rats, rabbit</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Parathion</td>
<td>IA insecticide</td>
<td>[48,69], HSDB</td>
<td>qual, chick</td>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Phorate</td>
<td>IA insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Phosmet</td>
<td>IA insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Propoxur</td>
<td>IA insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Quinalphos</td>
<td>II insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Sarin</td>
<td>NA nerve agent</td>
<td>[79,80]</td>
<td>rats</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Tabun</td>
<td>NA nerve agent</td>
<td>[80]</td>
<td>rats</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Terbufos</td>
<td>III insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Temporos</td>
<td>III insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Temephos</td>
<td>III insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Triazofos</td>
<td>OB insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Trichlorfon</td>
<td>II insecticide</td>
<td>NA</td>
<td>NA</td>
<td>Conflict</td>
<td></td>
</tr>
</tbody>
</table>

Note: The above mentioned list of OPC anti-ChE does not include the metabolic or active forms like paraoxon, malaoxon etc. Any information available in other language than English was not included. MSDS of the compounds was not selected because it does not contain an independent research citation. Over one hundred and twenty compounds were screened. NA stands for not available.
MATERIALS AND METHODS

To review the teratogenic and embryotoxic risk associated with the exposure of OPCs in animal models, a systematic review of literature was carried out. TOXNET, DART, TOXLINE, HSDB, Pubmed Central, Entrez-Pubmed, Science Direct, DOAJ, Google Scholar and IPCS-INCHEM databases were used to search the predefined key words (table 1). Year was not specified, therefore the search included all the possible literature available on the databases and in most cases it included literature from 1966 to 2011. Then further search was also done on the retrieved papers. Mostly abstracts or papers published and available in English were included in the review. Papers in other languages such as Russian, Polish or French were low in numbers and their exclusion will not change the scenario of our topic. About hundred and twenty organophosphorus compounds were screened. In addition to the search engine listed in table 1, toxipedia (free toxicology encyclopedia), Extension Toxicology Network (EXTOXNET) and different resources were checked on the internet. When a result is described as negative, it means that there was no reported teratogenicity or embryotoxicity; positive means that there is a report about the effect, and conflicting stands for no clear evidence or that both positive and negative reports were found in the search. The result is outlined in table 2. The term teratogenicity is referred to as the malformations produced in the offspring of animal models. Intra uterine growth retardation (IUGR) including the reduced/increased body weight of the pups/dams after treatment in comparison to untreated control was also included in the term. Developmental effect was also included in the study under teratogenesis. The term embryotoxicity included effect on implantation, fetal death, litter size, abortion, and reduced gestation period.

Table 3. WHO's classification scheme

<table>
<thead>
<tr>
<th>Class</th>
<th>Category</th>
<th>LD50 for the rat (mg/Kg body weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Oral</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solids</td>
</tr>
<tr>
<td>IA</td>
<td>Extremely hazardous</td>
<td>5 or less</td>
</tr>
<tr>
<td>IB</td>
<td>Highly hazardous</td>
<td>5-50</td>
</tr>
<tr>
<td>II</td>
<td>Moderately hazardous</td>
<td>50-500</td>
</tr>
<tr>
<td>III</td>
<td>Slightly hazardous</td>
<td>Over 500</td>
</tr>
</tbody>
</table>

RESULTS

The teratogenic and embryotoxic risk associated with the exposure of OPCs in animal models was investigated. Systematic review of literature was carried out according to the procedure described in materials and methods and shown in table 1. Table 2 shows the list of those OP pesticides whose teratogenicity/embryotoxicity information was available. Over one hundred and twenty OPCs were screened but reports on only fifty two compounds were found which is listed in table 2. Table 3 provides the basis of WHO's classification of pesticides.

The INCHEM database revealed the teratogenicity information about twenty seven OPCs out of over one hundred. The total number of related articles on TOXNET including DART, HSDB, and TOXLINE was 281 but further screening reduced the number to twenty four. and is not different from INCHEM. The further analysis of table 2 shows that there are ten teratogenic positive results and fifteen conflicting results which included both positive and negative reports. It means that totally twenty five cases out of fifty four (47%) may be considered to be a concern regarding teratogenicity. Among the 53% (29/54) of negative results, 15 (26%) have no independent research reference or have very old references. During the last twelve years (2000 to 2011) only twelve papers were found where five of them were on chlorpyrifos, all showing teratogenic and embryotoxic effect, two on dimethoate; one positive and the other one negative, and five on different OPCs; four positive and one negative. It is noteworthy that most literature showed teratogenic potential in OPCs during this period.
DISCUSSION

The exposure of OPCs to pregnancy is an important factor because it affects two organisms, a mother and a fetus. Abu-Qare et al. [9,14-15] conducted pharmacokinetic studies on the placental transfer of methyl parathion in rats and reported that the placenta is a poor barrier against methyl parathion. This results in a rapid and extensive placental transfer and the concentration was found to be the highest in the placenta followed by the concentration in rat fetuses. According to the authors, there is a reduction of several metabolizing enzymes and xenobiotic-binding proteins during pregnancy which may influence the toxicity of methyl parathion. Abu-Qare et al. [14, 15] found that a single dose of diazinon and methyl parathion has an easy access into maternal and fetal tissues resulting in inhibition of cholinesterase (ChE) enzymes, however the fetuses were found to faster recover ChE enzymes.

Exposure of rodent dams to certain OP pesticides such as chlorpyrifos, dimethoate, quianalphos and trichlorfon[16-19] during pregnancy has been associated with decrement in fetal weight in some studies. Other studies of the same pesticides [20] and other organophosphates [21,22] have shown no association with fetal growth. There have been conflicting results in literature regarding fetal and embryotoxicity of OPCs. For example parathion, diazinon, malathion and dichlorvos induce maternal toxicity but there is no evidence of teratogenicity [23-26]. However dipterex has shown to cause teratogenic effect at high concentration [26] and acephate was found to cause developmental toxicity at maternal toxic dose to mice [27]. Similarly, Chung et al. [29] reported that flupyrazofos, a new OP, causes fetal growth retardation at maternal toxic doses in rats. Ambali et al. [30] reported that chlorpyrifos affected conception and pre-implantation losses in dose dependent manner in Swiss albino mice.

Exposure to chemicals during different stages of development like pre and peri-conception, fetal, perinatal, peripubertal and adult has a different impact on health. Numerous animal studies have shown that in utero or early exposure to OP pesticides affect neurodevelopment as reviewed by Eskenazi et al. [10]. These studies have shown that both fetuses and infants may be more susceptible to developmental effects.

Secondly, a transfer of compounds to fetuses through placenta [9, 14] and a higher sensitivity of the young ones [86] also makes the topic critical. Moreover, the role of ChE during organogenesis [87] and anti-ChE activity of OPCs should not be ignored. The history of OPCs and anti-ChE activity is more than a century old but the study on this topic seems to be highly neglected. The scanty literature on the subject and consistent reports of harmful effects on humans [3, 4] is contradictory.

The importance of AChE in the function of the nervous system has been recognized for a long time, yet its role in development remains mysterious [31]. AChE is transiently expressed during discrete periods of neural development of the thalamocortical pathways, and transient AChE activity correlates with the specific growth of thalamic axons into the cortex and synaptogenesis with cortical neurons [32]. In addition, significant sequence similarity exists between AChE and cell adhesion proteins that function in morphogenetic phenomena. These observations have led to the hypothesis that AChE may play key roles in neural development. Albeit, no clear physiological function has yet been assigned to BChE, Mack and Robitzki [33] reported a functional role of BCHE in regulation of cell proliferation and the onset of differentiation during early neuronal development which was independent of its enzymatic activity.

The present study reviewed over one hundred OPCs for their teratogenic and embryotoxic effect in an animal model. The generalized view is that organophosphorus is non teratogenic or non embryotoxic in nature. According to one hypothesis where teratogenicity is taken to mean an induction of malformations in live offspring without a decrease in a number of births (i.e., no embryotoxicity), no adverse effects of organophosphates on pre- or postpartum mortality have been reported for the vast majority of organophosphorus pesticides, nor have embryonic defects been proved, except at doses that significantly retarded growth in the mother [88]. It was noted in the review that there is no similarity in the design of all the papers, particularly in a selection of dosages. Majority of the OP application was found to be between gestation days (GD) 6 to 15. Of course, logically it is a good time selection to observe teratogenesis but investigations have revealed that repeated injections of an OP does not necessarily produce the teratological effect. Secondly, very low, non toxic dose was tested for its effect but it is believed and reported that a non toxic dose for mother is also a non toxic dose for dams. Lassiter et al. [89] concluded in their result that dosages of the AChE inhibitor that were not maternally toxic also produced no embryotoxicity or teratogenicity. For instance, fetal brain Cholinesterase (ChE) has been
found to be less inhibited than maternal brain, maybe
due to placental and fetal detoxification of anti-ChE
[90,91] with a few exceptions where we find the
opposite [92,93]. It is also important to mention that
for a given dosage of many OPCs, brain ChE is much
more inhibited in young and postnatal animals than
in the adults [94-96] but this age related differences
to anti-ChE do not apply to fetuses [88-91]. It means
OPCs may be teratogenic or embryotoxic at maternal
toxic doses. Gomes et al. [97] found congenital
malformations when mice were treated with
formulations of organophosphates.

If we look at the comparison of multiple dosages
vs. a single dose, we find that maternal and fetal brain
ChE is comparable in multiple dosages but in case of
single high dosage, inhibition was found to be much
higher in a fetal brain than in a maternal brain [88].
Similarly, Kimbrough & Gaines [98] found the
deaths and resorption was increased in pregnant rats
when they were given a single high dose of parathion
or diazinon on the 11th day of gestation. Abou-Qare
and Abou Donia [14] reported that a single cutenous
dose of methyl parathion significantly inhibited
maternal and fetal brain AChE and plasma
butyrylcholinesterase (BuChE) in rats.

In brief, the question which initiated this short
review is whether there is sufficient evidence in
literature. Short answer to the question after going
through all searches is NO. There is a complete
scarcity of literature on the subject which is evident
from the table 2. Secondly, the references were very
old or the information given in toxic compound
databases like INCHEM or HSDB are either without
references or with one or two old references.
Moreover, information on less than 50% of OPCs is
available. No review article on the topic could be
retrieved from research publications. Designs of
studies were not uniform. During the last twelve
years, (2000-2011) only twelve papers could be
retrieved on different OPCs and interestingly, most
of the papers reported teratogenic and embryotoxic
effect of studied compounds in comparison to the old
studies which mostly showed OPs as safe
compounds. There are many discrepancies and
limitations in the studies.

SUMMARY

1. Less attention to the subject may be due to
a generalized hypothesis that OPCs are safer
and do not cause teratogenic effect. But the
unique and diversified toxicological profile of
different OPCs do not fit in the hypothesis and
need proper attention from scientific
community.
2. A comprehensive multicentre study on the
teratogenicity and embryotoxicity by OPCs is
warranted.
3. Threshold dose (Threshold of Teratological
Concern; TTC) for the effect should be
determined for all OPCs.
4. No uniformity in the study design was
found. There must be one standard procedure
to declare a compound as teratogenic and
embryotoxic.
5. Multiple doses vs. single sub toxic dose and
high dose vs No Observable Effect level
(NOEL) dose should be checked for all OPCs.
6. Different time course application like early
or late gestation, organogenesis period, pre-
implantation and peri-implantation period
should be screened for all OPCs.
7. Since most of the results presented during
the last twelve years showed teratological
effect of OPC, all the compounds should be
re-screened.
8. In the undertaken study, a maternal toxic
dose was noted to be embryotoxic and
teratological.
9. A maternal toxic dose or a minimum toxic
dose (for instance LD01) of all OPCs should
also be checked for the teratological and
embryotoxic effect.
10. Relationship of ChE inhibition and
teratogenesis study also need attention.
11. For the registration of each compound to a
concerned authority, submission of
teratological data should be made
compulsory.
12. Which animal model is appropriate for
teratogenic study is also a question.

CONCLUSION

Study on teratology and embryotoxicity by
organophosphorus compounds has been
neglected. The results are conflicting showing
both effect and no effect. Study procedure should
be standardized for all OPCs and a comprehensive
multicentre study should be undertaken with a
uniform standard procedure. The conflicting
situation may be due to non systemic and non
uniform studies.
REFERENCES

20. Clemens, G.R.; Hartnagel, R.E.; Bare, J.J.; Thyssen, J.H. Teratological, neurochemical, and

82. Denny,K.H.; Parker, R.M.; Bucci T.J.; Dacre, J.D. Developmental toxicity test of Tabun (GA) in the New Zealand white rabbit. (Abst.) Teratology. 1990, 41:549.

