MEETING ABSTRACTS ## DISCOVERY AND CHARACTERIZATION OF TACRINE/HUPRINE-TRYPTOPHAN HETERODIMERS AS NOVEL MULTIPOTENT COMPOUNDS AGAINST ALZHEIMER'S DISEASE Jan Korabecny ^{1,2}, Katarina Spilovska ^{1,3}, Manuela Bartolini ⁴, Barbara Monti ⁴, Doriano Lamba ⁵, Rosanna Caliandro ⁵, Alessandro Pesaresi ⁵, Vendula Hepnarova ^{2,6}, Daniel Jun ^{2,6}, Martina Hrabinova ^{2,6}, Rafael Dolezal ², Jana Zdarova Karasova ^{2,6}, Ondrej Soukup ^{1,2}, Eva Mezeiova ^{1,2}, Eugenie Nepovimova ³, Maria Laura Bolognesi ⁴ and Kamil Kuca ^{2,3} - ¹ National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic - ² Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic - ³ Department of Chemistry, University of Hradec Kralove, Rokytanskeho 62, 500 03 Hradec Kralove, Czech Republic - ⁴ Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy - ⁵ Istituto di Crystallografia, Consiglio Nazionale delle Ricerche, Area Science Park-Basovizza, S.S. 14-Km 163.5, I-34149 Trieste, Italy - ⁶ Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic e-mail: jan.korabecny@gmail.com Combination of tacrine/huprine, connected through a different linker tether length, with tryptophan led to the generation of a novel, highly-potent family of multi-target directed ligands targeting key molecular mechanisms of Alzheimer's disease. Based on *in vitro* biological profile, the 6-chloro-tacrine-(CH₂)₆-L-tryptophan heterodimer S- K1035 was found to be the most potent inhibitor of human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBChE) within the series, with nanomolar IC₅₀ values (6.31 and 9.07 nM, respectively). Moreover, S K1035 showed good ability to inhibit A β_{42} self-aggregation and hAChE-induced A β_{40} aggregation. The X-ray crystallographic analysis of TcAChE in complex with S-K1035 highlighted the utility of the hybridization approach used in the structure based drug design. S K1035 also exerted moderate inhibition against neuronal nitric oxide synthase (nNOS). *In vivo* studies displayed low toxicity profile compared to parent tacrine. S-K1035 also significantly ameliorated performances of scopolamine-treated animals. ## Acknowledgement Supported by Ministry of Health of the Czech Republic, grant nr. 15-30954A.