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Summary 
 
The gut microbiota of vertebrates, including humans, constitutes an integral genomic part that, together 

with the genome of the host, may be included under the umbrella concept of hologenome, which itself 
can be seen as one of the possible tools for evolution. Present-day lifestyles, technologically processed 
nutrients, and various diseases impact significantly upon composition of the intestinal microbiota. Knowledge 
recently brought to light has shown the gut microbiota to be a component of the microbiota–gut–brain axis 
having feedback effects on physiological and psychological processes of the host organism and its health. 
This minireview summarizes current knowledge and opinions on the importance of the microbiota–gut–brain 
axis and discusses possibilities for beneficially modulating one of the organism’s most vital axes. 
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INTRODUCTION 
 
The basic properties of living matter are to generate diversity and to occupy any space, including even space within 

living matter. These properties have led to the origin of the eukaryotic cell, the symbiotic nature of whose origin is ge-
nerally accepted today. Since the time of that origin, there have occurred continual coexistence and coevolution of pro-
karyotic and eukaryotic (micro)organisms. Over time, however, their symbiotic relationships have acquired different 
forms (see Box 1). Differentiation of these forms has been a direct consequence of (micro)organisms’ development 
and their adaptation to different environments. One environment that has provided suitable living conditions has been 
the gut of multicellular organisms. The process of gut colonization is phylogenetically very old and began just 
with the gut development in Protostomia organisms, such as Chaetognatha, Annelida, Mollusca or Arthropoda, 
and continued through the development of Deuterostomia, such as Echinodermata, Chordata, mammals, and humans.
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Box 1: Relationships between two organisms

Symbiotism close relationship in which at least one (micro)organism benefits

Mutualism symbiotic relationship in which both (micro)organisms benefit

Commensalism symbiotic relationship in which one benefits while the other is not affected

Parasitism symbiotic relationship in which one benefits while the other species is harmed

Syntrophy symbiotic phenomenon defined as “obligately mutualistic metabolism”



The human gut is home to an important and dynamic microbial ecosystem that contributes critically to human 
health status. The number of bacteria within the gut microbiota has been estimated at somewhere between 1013 
and 1014 in a so-called “reference man” of 70 kg body mass (1). The origin of gut microbiota, and thereby formation 
of the metaorganism, is generally believed to occur at the time of birth. A vaginally delivered baby acquires a spectrum 
of bacteria resembling its mother’s vaginal microbiota dominated by the genera Lactobacillus, Prevotella, 
and Sneathia. Within the microbiota of babies delivered by Cesarean section, the dominant genera are Staphylococcus, 
Corynebacterium, and Propionibacterium, the latter spectrum being similar to that present on the skin (2). 
Some studies, however, have demonstrated an association of the gut microbiota’s origin with microbes that were 
detected in womb tissues, such as the placenta (3,4). Moreover, microbial analysis of the meconium has demonstrated 
that the gut of a healthy human fetus is not sterile and that therefore gut colonization may have begun prior to birth 
(5,6). With formation of the metaorganism after birth the development becomes more dynamic, and composition 
of the gut microbiota is rapidly transforming along with such life events as changes in diet, under the influence 
of stress or illness, and especially during antibiotic treatment (7). Such interventions cause chaotic shifts 
in the microbiota. Gut microbiota not only play a principal role in maturation of the mammalian immune system, 
they also effect the digestion and absorption of macromolecules, and they produce biologically active molecules, 
including neurotransmitters. Moreover, they protect the gut epithelium by preventing pathogens from binding 
to mucosal cell binding sites. 

 
Numerous association studies have demonstrated close interrelationship between human health status 

and the corresponding profile of gut microbiota composition. On the one hand, there are modulations of the host’s 
biological processes (see Box 2) and, on the other, there are significant changes in the host’s gut microbiome 
associated with specific health problems (see Box 3). 
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Box 2: Biological processes regulated by microbiota (references)

Gut physiology (8,9)

Nutrient production and absorption (10)

Host development and physiology (11)

Energy balancing (12)

Metabolic functions (13,14)

Immune system functions (15–17)

Inflammatory processes (18)

Neurons–brain–behavior system (19–22)

The majority of those studies cited here have demonstrated improvement in the clinical status of patients 
after targeted intervention influencing the gut microbiota. Similar studies relatively recently have led to definition 
of the so-called microbiome–gut–brain axis.

Box 3. Health problems associated with gut microbiota alterations (references)

Neurological disorders Obsessive–compulsive disorders (OCD) (35,36)

Alzheimer’s disease (23,24) Anxiety disorders (37,38)

Parkinson’s disease (25,26) Stress (39–41)

Multiple sclerosis (27,28) Cognitive impairments (42–44)

Psychiatric disorders Obesity (45,46)

Schizophrenia (29,30) Gut inflammatory diseases (47–49)

Autism spectrum disorder (ASD) (31,32) Cancers (50–52)

Attention deficit hyperactivity disorder (ADHD) (33,34)
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MICROBIOTA–GUT–BRAIN AXIS 
 
Bidirectional interactions with top–down and bottom–up regulations between the brain and gut microbiota have 

received increasing attention in recent years. The impulse for studies on association of the brain and gut microbiota 
came from the increasing emotional and psychosocial pressure on people who suffered with such gastrointestinal 
symptoms as heartburn, indigestion, acid reflux, bloating, pain, constipation, and diarrhea (53). Moreover, dysbiosis 
and/or alterations of the gut microbiota were shown to be implicated in the pathogeneses and pathophysiology of some 
immunological, neurological, and psychiatric disorders (see Box 3). Communication among cellular components 
of the microbiota–gut–brain axis can be conducted through two independent pathways. The first can be seen 
in the defects of host epithelial barriers, the second occurs through neuronal connections of the brain and gut (Fig. 1). 
The lumen of the intestine contains a myriad of molecules, some of which are significantly biologically active. 
Among them are nutrition components, microbial metabolites, signaling molecules originated from the cells of gut 
associated lymphoid tissues, and neuropeptides or hormones produced by enteroendocrine cells. Diverse molecular 
components of this complex mixture have the character of signaling molecules. For example, peptidoglycans 
or lipopolysaccharides derived from gut microbiota membrane can cross the intestinal epithelial barrier in response 
to certain stress conditions, can translocate into the brain and activate specific pattern recognition receptors 
of the innate immune system, and thereby can affect brain behavior or produce a backward signal via activation 
of the hypothalamic–pituitary–adrenal axis (56,57).  

Figure 1. Schematic representation of gut–brain signaling axis. The intraluminal factors can penetrate through damaged 
intestinal mucosa into the bloodstream and/or lymphatics. In cases of blood–brain–barrier (BBB) defects, these can directly 
influence the brain cells. Luminal factors have similar effects that might be sensed by vagal and spinal afferent neurons 
constituting gut – brain connections (54,55). Conversely, the brain regulates gut cell functions through signals transmitted by the 
hypothalamic–pituitary–adrenal (HPA) axis (56). Abbreviations: EE cells - enteroendocrine cells, PP cells – Peyer´s patch cells, 
BBB defect – blood-brain-barrier defect
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Short-chain fatty acids 
 
The ability of microbes to ferment indigestible carbohydrate fibers means they can generate molecules having 

a variety of physiological and pathophysiological functions. Among these are acetic, butyric, and/or propionic 
acids, which are the most widely studied short-chain fatty acids (SCFAs). Dominant producers of SCFAs among 
human gut microbiota are members of the bacterial families Bacteroidaceae, Prevotellaceae, and Rikenellaceae 
from the phylum Bacteroidetes, members of the families Lachnospiraceae, Ruminococcaceae, Veillonellaceae, 
and Erysipelotrichaceae from the phylum Firmicutes, as well as some Actinobacteria and Verrucomicrobia are (58). 
SCFAs, most namely butyrate, can enhance the proportion of cholinergic enteric neurons via epigenetic mechanisms 
(59), can utilize a gut barrier defect, and, after leaking from the gut, can cross the blood–brain barrier and thus 
activate the vagus nerve and hypothalamus (60). Moreover, butyrate has been studied extensively as a histone 
deacetylase inhibitor and as a ligand for a subset of G protein-coupled receptors (61). 

 
Neurotransmitters 

 
Bacteria are among the neurotransmitter producers and/or inducers in the gut. They produce these neuroactive 

molecules either directly, according to their physiological state, or indirectly by interaction with enteroendocrine 
cells, which are internal producers of neuropeptides, hormones, and signaling molecules. 

 
Gamma-aminobutyric acid 

 
Commensal bacteria of the Bacteriodaceae, Bifidobacteriaceae or Lactobacillaceae family are known to produce 

gamma-aminobutyric acid (GABA), which is the dominant inhibitory neurotransmitter of the central nervous system. 
GABA’s receptors are widely distributed throughout the host cells, thus giving GABA a wide range of possibilities 
for affecting the behavior of cellular systems. Through its alteration of GABAergic neurotransmission, GABA 
can influence numerous central nervous system disorders, including behavioral disorders, pain, and sleep (62). 
There are data showing that GABA is engaged in modulation of such physiological processes as intestinal motility, 
gastric emptying, nociception, and acid secretion by destabilization of enteric nerves signaling (63).  

 
Serotonin (5-hydroxytryptamine) 

 
Serotonin (5-HT), a biologically active substance and monoamine neurotransmitter, is distributed within 

the mammalian body but mainly in the gastrointestinal tract. 5-HT plays a critical role during central nervous system 
development, neuronal differentiation, myelination, and synapse formation (64). The link between specific species 
of the enteric microbiome, 5-HT, and gastrointestinal symptoms has already been demonstrated using a multi-omics 
study in children with autism spectrum disorder (65). The presence and frequency of several enteric mucosa-associated 
Clostridial species are closely correlated with levels of either tryptophan or serotonin in mucosal supernatants. 
Although several strains of bacteria have been reported to produce 5-HT, no such data exists for gut microbiota. 
Their association with 5-HT production in the gut seems to be mediated rather indirectly via their effect upon 
enteroendocrine cells by secretion of such other biologically active effectors as, for example, SCFAs (66). 

 
Dopamine, epinephrine, and norepinephrine 

 
Neurotransmitters of the catecholamine category can play an important role in regulating the gut–brain axis. 

The endogenous catecholamines include dopamine, epinephrine, and norepinephrine. This type of neurotransmitters 
provides the acute stress response, also known as fight–or–flight response, to severe harmful events (67,68). 
Their functional association with the microbiota–gut–brain axis seems to be a functional loop. Some enteric bacteria, 
such as members of the genera Klebsiella, Pseudomonas, Enterobacter, and Staphylococcus, respond to catecholamine 
molecules by intensified proliferation and/or increased motility, biofilm formation, and virulence (69-71). Some, 
as for example Escherichia coli, Proteus vulgaris, Serratia marcescens, and Bacillus subtilis, produce molecules 
with neuroactive potential (72). The majority of data in this area, however, has originated from various in vitro 
systems and it is questionable whether these results can be regarded as valid for in vivo systems. Moreover, 
these molecules can function as effectors for interkingdom signaling (i.e., for bidirectional communication between 
the host and its microbiota) between prokaryotic and eukaryotic cells. For prokaryotic cells, such molecules 
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as epinephrine and norepinephrine represent signals for quorum sensing and function as global regulators of virulence. 
Bacteria of the families Enterobacteriaceae and Pasteurellaceae sense the host stress hormones epinephrine 
and norepinephrine in combination with iron via the two-component QseBC sensor system (73,74). Overall, 
however, it should be emphasized that the effect of catecholamines on gut bacterial populations may alter the proportions 
of bacterial families responsible for metabolism, metabolite utilization, and gut cell–microbe signaling. Ultimately, 
they may affect microbiota–gut–brain axis signaling. 

 
Hormones 

 
The production of biologically active molecules by gut microbiota might also be a critical event in regulating 

microbiota–gut–brain, host metabolic pathways, and functional systems. A dominant role might be played by neuroen-
docrine hormones produced by enteroendocrine cells in response to interaction with members of the microbiota 
or their products (Fig. 2). In a context of so-called microbial endocrinology, the vast array of enteroendocrine cell 
receptors recognizing pathogen-associated molecular patterns (PAMPs) or acyl homoserine lactones, which are 
bacterial quorum-sensing molecules, as well as signals originating from molecules of gut lumen content, produce 
a number of hormones that influence interrelated physiological processes of the host (75,76). 
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Figure 2. Schematic representation of the possible role of gut microbiota in regulating physiological processes of the host. 
Bacteria, bacterial components, as well as bacterial communication system molecules activate the enteroendocrine cell subtypes 
to produce basic regulatory hormones of different physiological processes.

For example, cholecystokinin, its sulfated octapeptide isoform, or derived peptides have been demonstrated 
to have anxiogenic (77), panicogenic (78), and hallucinogenic (79) effects. Ghrelin produced by A (X-like) cells 
regulates glucose hemostasis by inhibiting insulin secretion and regulating gluconeogenesis and glycogenolysis 
in the liver (80) and plays crucial roles in general energy homeostasis, cardioprotection, muscle atrophy, and bone 
metabolism (81). Other hormones from enteroendocrine cells production have functions in gastrointestinal motility 
(somatostatin, gastrin) or body fluid homeostasis (secretin) and/or they play roles in mucosal immunity 
(somatostatin, cholecystokinin, neurotensin, histamine, and leptin) (82).  

 
Hormones produced by different types of enteroendocrine cell subtypes create bridges between functional 

systems of the body. Due to direct or indirect interaction with enteroendocrine cells, the gut microbiota and their dynamic 
consortia contribute to and modulate the responses of these body functional systems to internal signals originating 
from nutrition as well as to external signals originating from the environment. These signals might be psychological, 
physical, or arising from interactions with other (micro)organisms.        
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CONCLUSIONS AND PERSPECTIVES 

 
A harmonious gut ecosystem clearly plays important roles during ontogeny and from birth to senescence. It is 

important for development, maintaining organism integrity, and ensuring proper functioning of metabolic pathways 
and of organ cell systems. We must emphasize the word “harmonious” here, because only a balanced consortium 
of microbiota can ensure proper functioning of the host’s interconnected functional systems. The various genera 
of different phyla produce diverse neuroactive molecules. An example can be seen in the importance for balanced 
representation of the phyla Bacteroidetes and Firmicutes. Their ratio is often changed in connection with certain 
diseases or after host exposure to stress. Within the gut, on the one hand, acetate and propionate are mainly produced 
by bacteria of the Bacteroidetes phylum. Butyrate, on the other hand, is generated by bacteria of the phylum 
Firmicutes (83). Data is accumulating to demonstrate that the gut microbiota influences the perception of pain (84); 
that it can influence the pathogenesis of Alzheimer’s disease (85-87), Parkinson’s disease (88), and some 
psychiatric disorders (89), such as attention deficit hyperactivity disorder (90) and autism spectrum disorder (91); 
and that it can be associated with problems of cognitive impairment (92). The relationship between various health 
problems and activation of the microbiota–gut–brain axis is schematically presented in Fig. 3. 

46

Kubelkova, Macela: Microbiota–gut–brain axis

Figure 3. Mutually intertwined relationships among microbiota and various developmental and health problems associated 
with activation of the microbiota–gut–brain axis.

Nevertheless, there still exist the questions of what is the primary signal leading to gut dysbiosis and what is 
the sequence of events leading up to manifestation of a disease. The interrelationships among the microbiota 
and physiological regulatory and functional systems resembles a magical pentagram. The pentagram is a very old 
symbol of elements (in traditional Chinese medicine dating back before the third century BC and representing fire, 
earth, metal, water, and wood), which, to put it simply, controlled or regulated the health profile of human beings 
and in a larger sense their very existence. Within the concept of our classical western medicine, these elements 
can be regulatory systems (microbiota, enteroendocrine regulation, neurohormonal regulation, natural immune 
regulation, and finally, at the top of the pentagram, the overall genomic regulation controlling the developmental 
and integrity status of the organism). Inclusion of microbiota among the systems regulating and controlling 
the physiological status of the host further justifies creation of the holobiont concept introduced into the scientific 
literature by Linn Margulis, which was at that time elaborated into a system for defining itself and the concept 
of hologenome as one of the tools of evolution (93-97).
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The analyses performed to date demonstrate the importance of maintaining a dynamic equilibrium of bacterial 
species in the intestinal microbiome. From this point of view, it seems very worthwhile to seek such nutritional 
supplements as will help to reverse dysbiosis caused by disease or disbalance of the gut–brain axis to restore 
original microbial composition. Supplementing just one of the bacterial species without knowing the immediate 
composition of the microbiome can in certain situations be counterproductive. Moreover, issues regarding the use 
of probiotics, such as horizontal gene transfer, possible presence of bacteriophage genes in probiotic bacteria, 
and metabolic changes influencing the gut–brain axis, are not yet fully resolved (98,99). Despite all the short-
comings in our knowledge of the gut–brain axis, it is necessary to gradually accept the concept that certain 
immunological, neurological, and psychiatric problems related to current lifestyles will be treated by targeting 
the microbiota–gut–brain axis using natural nutritional supplements to restore the host’s original gut microbiota 
composition. 
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