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Summary 

 
Purpose: Among other reasons, the deteriorating global security situation and dangers associated 

with nuclear weapons have increased the need for deeper knowledge of the basic mechanisms involving 
the human immune system and ionizing radiation (IR). We conducted a review as to the effects of IR 
on thymic tissue, and particularly on the development of thymocytes and the T lymphocytes population 
in peripheral blood. 

Existing knowledge on this topic is based in part on national registers that store records concerning 
irradiated people. The majority of studies in this area, however, are based on experimental animal models. 
The main open question in this subject area regards the delayed effects of IR on thymus tissue, development 
of thymocytes, and subsequent impact on the immune system. Findings acquired to date on effects of IR 
are contributing to emerging fields such as immunotherapy, the objective of which is to support or activate 
natural immunity response. 

Methods: Recent research articles were reviewed regarding the influence of IR on thymus tissue 
and thymocytes development. 

Results: Differentiation and proliferation of thymocytes constitute a complex and sensitive process that is 
partially altered after irradiation, as are, too, the mechanisms for movement of early (derived from bone 
marrow) and derived (thymus derivatives) precursors. Disruption of these processes may lead to alteration 
of immune system function. 

Conclusions: Low doses (<200 mGy) may lead to changes in or disruption of functions of the thymus, 
thymocytes, and mechanisms of the immune system. The extent of IR’s influence is dependent not only 
on the individual’s radiosensitivity but also on his or her sex and age. With increasing absorbed IR dose, 
the risk of damage to thymus tissue and thymocytes in the organism rises and the extent of damage increases. 
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Introduction 
 
Biological effects of ionizing radiation (IR) on the human organism constitute today a matter that remains partly 

unexplored. Data not yet completely evaluated exists in national medical registries recording individual cases 
of irradiated people. One of the first such registries was established after the nuclear bombings of Hiroshima 



and Nagasaki in 1945 (1). In the Czech Republic, the national central registry known as the Overview of Occupational 
Diseases Caused by the Influence of Ionizing Radiation in the Czech Republic was established in 1996 (2, 3). 
Currently, however, the majority of findings in this area originate from work using experimental animal models, 
and a minority of findings originate from modern analyses using data from global and national registries. Those studies 
and analyses performed have contributed to optimizing treatment of acute radiation sickness (4). Current treatment 
procedures allow survival of patients irradiated by doses previously considered to render individuals incurably 
sick. The main questions presently unexplored, therefore, concern not acute symptoms of IR on the human organism 
itself, but rather its late effects and alteration of immune system mechanisms. Uncovering these complicated 
biological mechanisms may be of considerable importance not only for treatment of acute radiation sickness but also 
for patients with oncological diseases. 

 
A summary document publishing the results of IR on the organisms of irradiated people 30 years after 

the Chernobyl nuclear power plant (NPP) disaster is the extensive UNSCEAR report from 2000 (5). In particular, 
the interpretation of low, single-irradiation doses on the human immune system was shown in that report to be very 
difficult (6), even though it is known that even very low doses in the range of 2.5–7 mGy lead to changes in the repre-
sentation of individual lymphocyte populations in peripheral blood within a matter of months. This concerns 
in particular lymphocytes because they are among the most radiosensitive cells of the immune system (5). 

 
Irradiation of lymphocytes results in their reduction in number, which is dependent on the absorbed dose. 

The aforementioned UNSCEAR report from 2000 accordingly states that a slight reduction in absolute numbers 
of lymphocytes occurred after a whole-body, single-dose irradiation of the organism by up to 7 mGy. Their overall 
renewal starts within the first year after irradiation, depending on radiosensitivity of the given lymphocyte population 
and the state of the irradiated organism (5). The report also points out that the absorbed dose of the Chernobyl 
inhabitants was not always retrospectively determined with absolute precision, and therefore certain published 
results may differ from some other published studies related to irradiated people. 

 
The UNSCEAR report from 2000 also states that in 85 workers participating in the clean-up work who received 

a fractionated dose of 1–330 mGy as a result of the disaster, there was a slight reduction in T lymphocytes depending 
on the absorbed dose between the 9th and 156th days. Over the long term, however, no changes in the absolute 
number of lymphocytes were found. 

 
Influence of ionizing radiation on lymphocytes, hematopoesis, and immune system 
 

A lymphocyte is a type of white blood cell occurring in vertebrates’ peripheral blood. Because there are 
no granules in its cytoplasm, it is classified as an agranulocyte and represents a functionally diverse group of immune 
cells divided into a population of B lymphocytes, T lymphocytes, natural killer (NK) cells, and a rare population 
of NK T cells. The representation of lymphocytes in human peripheral blood is 24–40% of the absolute number 
of white blood cells [6], which corresponds to 1.2–3.1 × 109/l (7). 

 
Lymphocytes, as well as other haematopoietic cells, are formed from the common haematopoietic stem cells 

(HSCs), which have a capability for self-renewal and formation of all blood cell lines. In adult mammals, HSCs 
occur in very low numbers in the bone marrow (8). 

 
The development of lymphocytes continues from the pluripotent HSCs through the common lymphoid 

progenitor (CLP), whose surface phenotype is lin-CD34+CD38+CD10+ (9), then through the lymphoblast, which is 
the first morphologically discernible precursor of lymphopoiesis. These are large cells from which after 2–3 divisions 
are formed pro-lymphocytes already bearing the characteristics of B and T lymphocytes (10). At that time, NK cells 
diverge from the lymphoid line and do not bear the differentiation characteristic of either B cells (CD19+) 
or T lymphocytes (CD3+). Development continues through the stage of small lymphocyte from which the two main 
and functionally different populations of T and B lymphocytes diverge (11). 

 
Because lymphocytes constitute a radiosensitive population of blood cells, their reduction in absolute cell count 

is observed 24 h after irradiation by a dose greater than 1 Gy. Detailed analysis has demonstrated a reduced 
subpopulation of CD4+ T lymphocyte fraction and lower T lymphocyte proliferation ability in irradiated humans 
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after an atomic bomb drop and the Chernobyl accident. A long-term decrease in CD4+ T lymphocytes was observed 
in severely exposed individuals (12) 

 
The Chernobyl study divided irradiated people into three groups (group 1: 0.1–0.5 Gy, group 2: up to 4 Gy: and 

group 3: up to 9 Gy) and the overall decrease in the absolute counts of T lymphocytes was recorded for all groups. 
A decrease in CD8+ T cells was observed in the least-exposed group and a decrease in CD4+ cells in subjects 
irradiated with 2–9 Gy. Moreover, alterations in thymic epithelial cell function were observed in all three groups (13). 

 
Decrease of NK cell counts, CD4+ and CD8+ T cells, and the phagocytic activity of neutrophils have been 

demonstrated in individuals involved in Chernobyl clean-up operations (14). On the other hand, the Kuzmek study 
of Chernobyl employees did not detect disruption of the T cell subpopulation except for CD3+CD16+CD56+ (NKT 
cells). However, in vitro immunophenotyping of phytohemagglutinin (PHA)-activated MNCs (peripheral blood 
mononuclear cells) after activating blood cells demonstrated a suppression of CD4+ T cells propagation and an increase 
in CD8+ T cells propagation compared to control individuals (15). 

 
In cases of long-term effects on the organism from very low doses, however, the situation is different. Individuals 

exposed to daily doses smaller than 10 mSv survived irradiation for several years without organ function failure. 
In some individual cases, however, a failure of immune surveillance later occurred, which was demonstrated 
by neoplastic complications categorized as stochastic effects of IR (16). 

 
Daily doses greater than 10 mSv but not exceeding 100 mSv lead to serious damage to haematopoiesis in bone 

marrow, and that eventually can result in lethal attenuation of haematopoiesis through myeloproliferative syndrome, 
whereby there occurs uncontrolled increase of myeloid cells and diagnostics point to a leukemic process (16). 

 
Studies concerning the influence of doses greater than 1.5 Gy on the human organism (in particular in nuclear 

bombing survivors) mention changes in cell immunity defined mainly by changes in the population of T lymphocytes. 
No reduction of NK cells has been confirmed (18, 19), however, and that is the main lymphocyte population 
ensuring cytotoxic cell immunity and capable to destroy tumour cells in the organism even before encountering 
the antigen. Another study observed a slight inflammatory response of the organism, as had been expected 
in connection with increased production of reactive protein and inflammatory cytokine interleukin 6 (IL 6) (20). 

 
Akley et al. report an absorbed dose of 0.3–0.5 Sv per year to be a threshold dose for immune system damage (21). 

It can be stated with certainty that when radiation dosage around 1 Gy is reached bone marrow syndrome of acute 
irradiation disease develops in the organism. Ionizing radiation in bone marrow leads to induced cell destruction 
with subsequent flooding of bone marrow with erythrocytes, known as “bone marrow bleeding”. Renewal of microvas-
cular bone structure, including its sinus parts, is necessary for regenerating production of haematopoietic cells (22). 
The affection rate of haematopoietic and other tissues after total-body irradiation of the organism is of crucial 
importance for survival of that organism. Pathological changes in the affected organism’s tissues result from com-
promised integrity of the sensitive stem cells and commonly lead to their death or non-standard development 
in the direction of cancer cells. 

 
Important long-term changes of the immune system have occurred when absorbed IR doses were high. 

In one part of the workers participating in cleaning up as a consequence of the Chernobyl disaster in 1986, acute 
radiation sickness was confirmed on the basis of prodromal, clinical, and manifest symptoms. Fifty workers were 
irradiated with total dose of 2.2–4.1 Gy and 22 workers received total-body dose in the range of 4.2–6.4 Gy. Median 
lethal dose (LD50 4.5 Gy) led to a quicker development of bone marrow syndrome of radiation sickness, and long-term 
regression of the immune system was observed in the irradiated people. Total-body irradiation of the organism with 
doses of 4.5–8 Gy resulted in serious long-term damage to haematopoiesis in bone marrow. Cytokine factor 
treatment is currently preferred for renewal. In cases of complete disappearance of haematopoiesis stem cells, 
however, bone marrow transplantation is preferred (5, 23). 

 
Homeostasis integrity depends primarily on the organism’s ability to keep the creation of blood elements 

in balance. Some of these processes are occurring continuously in the body, while others are started up 
by a life-threatening state. The mammalian organism normally works such that the main objective of homeostasis 
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is to maintain physiological absolute numbers of bone marrow stem cells, erythrocytes, thrombocytes, 
and leukocytes (neutrophils, basophils, eosinophils, lymphocytes, and monocytes). The individual blood elements 
differ in their own characteristic lifetimes, sensitivity to IR, and time necessary for their renewal. Lymphocytes are 
among those blood components most sensitive to the effects of IR. The first morphological changes occur as soon 
as 2 h after a total body irradiation dose of 0.25 Gy. The effect of IR in lymphocytes results in chromosome 
clustering, pyknosis, nucleus fragmentation, abnormal mitoses, creation of vacuoles in mitochondria, and changes 
in the membrane structures and cytoskeleton. These pathological changes lead to interphase death in cells outside 
of the cell cycle. At doses greater than 5 Gy, interruption of mitosis in lymphatic tissues occurs within 30 minutes 
after irradiation, followed by disappearance of lymphocytes from the spleen and lymph nodes. A rapid reduction 
in lymphocytes can also be observed in peripheral blood. A maximal reduction of lymphocytes in the blood occurs, 
depending on the dose size, within 3 days after irradiation of the organism. In case lymphocytes are reduced to below 
50% (1 × 109/l) within 48 h, the patient can be expected to develop symptoms of acute radiation sickness. Estimated 
prognoses for patients considering the total numbers of lymphocytes in blood are shown in Table 1.

83

Němcová et al.: Influence of Ionizing Radiation on Development of Thymus and Thymocytes

Table 1. Estimated prognoses for patients according to total numbers of lymphocytes in blood (19).

Absolute number of lymphocytes Estimated dose and prognosis

> 1.5 × 109/l Insignificant radiation dose, good prognosis

1–1.5 × 109/l Medium reduction of granulocytes and thrombocytes after 3 weeks, good prognosis 

0.5–1 × 109/l Serious form of bone marrow syndrome, prognosis dependent on early initiation and method of treatment

< 0.5 × 109/l Radiation dose may be lethal

0 Radiation dose is lethal

Lymphopenia and symptoms of functional disruption in mechanisms caused by damage to lymphocytes last 
for months. In a horizon measured in years, however, there occurs a recovery of the immune system in survivors, 
as indicated by data acquired from people affected by the bombings of Hiroshima and Nagasaki (20). 

 
Based on results acquired after the Chernobyl NPP disaster, it can be stated that, even in case of overcoming 

the consequences of acute radiation sickness, the patients die prematurely within a matter of several years. The largest 
number of patient deaths was recorded 2 to 10 years after irradiation. A majority of lethal cases (up to 95%) was 
among 20 irradiated patients who absorbed total-body doses of 6.5 Gy and greater. Those irradiated in the first years 
after the disaster died mainly due to lung damage manifested by prolonged inflammation of the pulmonary alveoli 
transforming into lung fibrosis caused by higher occurrence of beta radiation during the Chernobyl NPP disaster. 
Two years after this disaster, a person died due to lung gangrene. Along with red bone marrow and tissue of the large 
intestine, lungs are among these tissues with the largest tissue factor in accordance with ICRP 103. In addition, 
lungs are classified in the radiosensitivity group of late-responding tissues whose responses are highly dependent 
on the volume of irradiated tissue. This fact appears to result in a much higher probability of developing lung 
gangrene in irradiated patients than in the non-irradiated population.  

 
In the period 7–8 years after irradiation, part of the surviving patients began to experience signs of bone marrow 

damage or failure characterized by acute or chronic myeloproliferative disease (5, 21). Leukaemia develops 
due to the immune system’s not recognizing the occurrence of atypical blast cells in bone marrow. Atypical blast 
cells remain in the bone marrow, where they continue uncontrollably to divide and thereby lead to disrupting 
the homeostasis. Many studies have examined risk rates of developing leukaemia (22, 26, 27). 

 
The thymus and ionizing irradiation in the organism 

 
The thymus is a central lymphoid organ ensuring the development of T lymphocytes, which process is governed 

by chemokines produced by the supportive connective tissue of the thymus (28). Anatomically, the thymus is located 



behind the sternum. It is covered in a sheath of connective tissue that reaches into the interior of the parenchyma 
and divides it into the individual lobes. Each lobe consists of a cortex and a medulla, the latter of which stains 
at a lighter colour on histological samples due to the lower density of lymphocytes. In the thymus cortex, there occur 
considerable numbers of small and large T lymphocytes, dispersed epithelial reticular cells, and macrophages. 
The thyroid medulla contains, in addition to lymphocytes, especially epithelial cells, Hassall’s corpuscles, and 
macrophages. The size of the thymus and its histological composition depend on many factors, such as an individual’s 
age and occurrence of diseases earlier in the organism’s life. The thymus is fully functional from birth. In people 
12–14 years of age, first the cortex of the individual lobes disappears, being replaced by adipose tissue (28, 29). 
Its functions are then taken over by lymphatic organs. 
 

The cell population of the thymus is supplemented throughout an individual’s lifetime with precursors 
of T lymphocytes (pre thymocytes) having phenotype CD4−CD8−CD25−CD44+, CD4−CD8−CD25+CD44+ and which 
migrate through the blood vessels from red bone marrow to thymus tissue (30). Immature thymocytes may be 
divided into four stages of development with differing surface expression of CD44 and CD25. The least mature 
(naive) subpopulation of thymocytes has the surface characteristics CD44+ and CD25−. These cells then differentiate 
into a subpopulation of pro-thymocytes (CD44+CD25+). Pro thymocytes start binding to TCRβ and lose the CD44a 
receptor (CD44−CD25+). The most mature thymocytes are termed post-pre thymocytes, have surface characteristics 
CD44−CD25−, and have completed binding of the TCRβ gene (7).
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Figure 1. Lymphocyte populations in human thymus 
 

*T-ly – T lymphocytes. Value wt for other tissues (0,12) is related to the arithmetic average of mean doses in 13 organs and 
tissues of both sexes stated below. Other tissues: adrenal gland, extrathoracic region, gall bladder, heart, kidney, lymph nodes, 
muscles, mucosa of the oral cavity, pancreas, prostate (for males), small intestine, spleen, thymus, uterus / cervix (for females). 
bb – cells 
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The process of migration and nesting of pre-thymocytes into the thymus cortex is governed by chemokines produced 
by the supportive connective tissue of the thymus. Pre-thymocytes are large, double-negative (CD4−CD8− CD44−CD25−) 
cells, expressing the CD7 and CD2 molecules and later also CD5. On their surface are bound the CD38 and CD71 
activation molecules. In the thymus, these cells gradually proliferate and undergo rigorous selection, with only 1–3% 
of their total number passing (9, 31). Pre-thymocytes first colonize the organ’s cortex, where maturation of T cells 
occurs in 4 degrees, including both the transformation of molecule phenotype and regrouping of genes for TCRβ 
(αβ-T) and TCRδ (γδ-T) (32). The binding of the antigen-specific receptor TCR (the process for eliminating cells 
with non-functional TCR) is followed by the selection process (interaction of the MHCI and MHCII glycoproteins 
with surface characteristics of CD4, CD8). Glycoproteins of the MHCI or II groups on the surface of cells present 
antigenic peptides from pathogens. Cells which passed the two previous selections leave the cortex and move 
to the thymus medulla, where so-called negative selection for medullary epithelial cells occurs.

85

Němcová et al.: Influence of Ionizing Radiation on Development of Thymus and Thymocytes

Figure 2. Binding locations for CD4 and CD8 on MHC molecules classes I and II (33).

In the thymus medulla, T cells learn to recognize histocompatible antigens. T cells that were unsuccessful in 
the selection process undergo cell death (apoptosis) (3). Successful but immature T lymphocytes subsequently leave 
the thymus and are transported into thymus dependent areas of non-thymic lymphoid organs, where they settle, 
mature, and differentiate into the subpopulations of auxiliary (Th, CD3+CD8+CD4−), regulatory (Treg, nTregs “natural” 
CD4+CD25int/highCD127low, iTreg “induced” Tr1 CD4+CD25−, Tr2 CD4+CD25+), killer (Tc, CD3+CD8+CD4−), 
and memory (Tm, Tcm “central memory T cell” CD25+CD45RA−CD45RO+CD127+, Tsm “T-stem cell memory” 
CD62L+CCR7+CD45RA+CD45RO+) cells (34).

Figure 3. The process of positive and negative selection in the thymus (35). 
a) Negative selection tolerance of own and tumour 
b) Escape from negative selection 
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As described above, thymopoiesis is a highly sophisticated process and its disturbance leads to immunity 
disorders that may themselves cause autoimmunity response of the organism and failure of immunity control 
mechanisms resulting in carcinogenesis. 

 
The development of the thymus and related mechanisms logically indicate that the most serious disorders occur 

in the early stages of thymus development. An interruption in thymus function may give rise to serious disorders 
of the immune system, reproduction organs, thyroid, or the external side of the colon. The thymus can also be endangered 
by the formation of tumours (thymomas), and particularly in patients with the autoimmunity disease Myasthenia 
gravis, who face a high probability (25–50%) for the occurrence of a tumour. All thymomas are potentially 
malignant. Tumours may also develop from thymocytes (thymic lymphomas). 

 
Incomplete proliferation or differentiation processes of blood elements due to thymus damage may occur 

in an unexpected radiation accident, especially during an individual’s prenatal development and during examinations 
using sources of IR on pregnant women. Unexpected irradiation or contamination of individuals can occur in cases 
of nuclear accidents and disasters, where acute symptoms of radiation sickness develop depending on the dose received. 

 
Utilizing knowledge of effects of irradiation in therapy 

 
In recent years, the importance of the study of T lymphocytes, their migration and differentiation has been shown 

to be of increasing importance. Among other areas, oncological studies have examined immune surveillance 
of cancer, which was first hypothesized in the mid-20th century. 

 
Modern medicine is in many cases able to treat some of the symptoms of acute radiation syndrome and damage 

to the body due to radiation, but the suppression and prevention of late effects in irradiated individuals is still an open 
chapter. Knowledge gained from survivors after radiation accidents and disasters suggests, however, that there 
exists a high probability that the immune system’s mechanisms will be transformed even at low doses. 

 
Similar conclusions have been drawn from research into the study of thymus tissue from 165 people exposed 

to the 1945 bombing in Hiroshima. The estimated doses were 5 mGy to 3 Gy. Increased characteristics of thymic 
involution have been observed in subjects receiving low (5–200 mGy) and moderate (<200 mGy) radiation doses 
(36). As the S. Xiao study shows, the effect of radiation on thymopoiesis in mice is substantially influenced by sex, 
dose, and age of the irradiated organism. The overall impact on hematopoietic lineages is more pronounced in women. 
Long-term suppression of thymopoiesis following sublethal irradiation of the organism is primarily dependent 
on a reduced number of progenitors in the bone marrow together with a reduced number of pro-thymocytes. 
The number and ability of HSCs to produce T lymphocytes can be dramatically and permanently impaired after 
only one relatively low total body dose, thereby leading to early thymus aging (37). 

 
Restoration of thymic epithelial cells leading to T cell differentiation, proliferation, and selection requires a fully 

functional thymus. Disruption of the T lymphocyte and thymus development process appears to be directly associated 
with suppression of the body’s specific immune response, as manifested by increased susceptibility of patients 
to infectious diseases, relapse, and, in the case of bone marrow transplantation, host graft rejection. Clinical studies 
also suggest that a lower-intensity cytoreduction regimen leads to increased T cell lymphopoiesis, thus suggesting 
a direct link between thymus tissue damage and T cell formation. The studies described above have led to a more in-
depth examination of processes aimed at the mechanisms of protecting and restoring thymus and thymopoiesis tissue 
(38). Greater attention is drawn to this subject area within today’s dynamically developing field of cancers 
immunotherapy, which primarily is directed to supporting and activating the natural immune response to eliminate 
tumours in the body. This therapy utilizes both immune system cells, such as T lymphocytes, and their natural products, 
such as cytokines and interferons. A new development in immunotherapy encompasses research into T lymphocytes 
that are genetically modified by viral vectors to function to the maximum benefit of the immune system (39, 40). 

 
Conclusion 

 
The aim of our review was to summarize older and more recent findings in the field of IR effects on thymic tissue 

and thymopoiesis, as well as to determine the impacts of their damage to the immune system. Studies have shown 
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that low doses (<200 mGy) may lead to alteration or impairment of thymus and changes of T lymphocyte population 
in peripheral blood. Doses of 5–200 mGy can bring irreversible changes in the body that over a course of years 
can lead to impairment or damage to the immune system and in some cases to the development of cancer 
or autoimmune diseases, including multiple sclerosis, arthritis, as well as kidney and endocrine gland diseases. 
These, in turn, increase the likelihood of such other serious illnesses as diabetes and thyroid and genital diseases. 

 
The extent of IR influence depends not only on the type of radiation and the individual’s radiosensitivity, but also 

on his or her sex and age. Risk of damage to the thymus and thymocyte tissue in the body increases in direct 
proportion to the absorbed dose. Exposure to higher radiation doses leads to long-term impairment of thymus and 
thymopoiesis, as manifested by a long-term decreasing proportion of the T subpopulation in the body. Recovery 
in the number of T lymphocytes in the body depends on the restoration of thymic epithelial cells and hence of thymus 
function. Studies also show a direct impact of impaired thymic function and thymopoiesis on the immune system. 
In the long term, the body may develop autoimmune diseases or its ability to conduct immune surveillance of cancer 
may be suppressed. Thus, it is apparent that deeper exploration of the processes and mechanisms leading to disruption 
and alteration of the thymic and thymocyte functions, and with a view to preventing their being damaged 
and promoting their renewal, will be important in addressing the late effects of IR. 
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