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Summary 

 
Interaction between a host cell and pathogen is a permanent event and can have either adverse outcome 

leading to disease or great benefit for their mutual co-existence. Understanding pathological host–pathogen 
interaction is a prerequisite for unveiling the strategies of pathogens virulence. A number of methods exist today 
for deciphering and characterizing host–pathogen interaction. To increase their sensitivity and accuracy, 
these methods are commonly used in combinations, such as affinity purification and liquid chromatography–
mass spectrometry analysis, cross-linking together with liquid chromatography–mass spectrometry analysis, 
or stable isotope labeling with amino acids in cell culture with affinity purification. In this review, we focus 
on study of the early interaction time interval when the pathogen binds and invades the host cell and activates 
sophisticated mechanisms to overcome the host defense barrier. We briefly describe the methods applied 
in identifying bacterial–host cell protein interactions while emphasizing these methods’ various strengths 
and weaknesses. 
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INTRODUCTION 
 
Host–microbe interaction is a term expressing the relationship between a host cell and a microorganism. The host 

cell usually is represented as a human cell, but microorganisms encompass bacteria, viruses, prions, and fungi. 
However, this relationship is not always harmful either for the host cell or for the pathogen itself. Firstly there is 
symbiosis represented by commensalism (e.g., gut microbiota), and mutualism. These relationships bring certain 
benefits for one or both organisms. On the other hand, there can be relationships that are harmful and undesirable 
for the host cell (parasitism) and could lead to infection (Fig. 1) (1,2). Host and pathogen influence one another 
always for worse. The interplay between the two organisms is not so simple as mere physical interaction. It is a whole 
process involving various mechanisms and diverse interactions based upon protein–protein interaction or protein–
lipopolysaccharide interaction, where the lipopolysaccharide is a dominant component of the host’s cellular surface. 
In this review, we focus on protein–protein interactions between host cell and pathogen, methods suitable 
for detecting those interactions, as well as the pros and cons of those various methods.
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Figure 1. Overview of host–pathogen relationship.
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First line of host defense 
 
The first line of host defense against microorganisms is the mechanical barrier consisting of skin and mucous 

membranes. There exist also chemical barriers characterized by the likes of antibodies secretion, low pH in the stomach 
environment, and secretion of lysozyme and/or other cationic antimicrobial peptides, such as hemocidins, defensins 
and cathelicidins (3). A potential entry point for a whole range of microorganisms is created by an occurrence 
of non-intact, mucous membrane or wounded skin. Mucous membrane produces and secretes different substances 
(e.g., mucus) containing numerous glycoproteins known as mucins (4). Microorganisms coated in mucus may be 
prevented from adhering to the epithelium and ultimately eliminated by ciliary movement (5). Presence of the antibody 
immunoglobulin A on the mucosal surfaces is another crucial element in host immune protection (6). Overcoming 
this first line of host defense can be considered a key mechanism within the process of virulence for a wide range 
of pathogens. 

 
Pili and fimbriae belong to group of bacterial type of adhesins. Theses proteinaceous filaments represent the first 

bacterial structures which mediate a physical contact between the pathogens and the host cells. This contact leads 
to cell signaling events and triggers the host immune responses. On the other hand, pathogens may be able to exploit 
this close interaction while secreting various effector proteins in order to manipulate the adverse milieu of the host 
cell (7–9). All adhesins display high selectivity for target molecules localized on the surface of the host cell (7). 
Every single process occurring after adhesion depends upon the type of cells that was attacked by the pathogen. 
Phagocytic cells, represented by macrophages, neutrophils, and dendritic cells, recognize pathogens through various 
pattern recognition receptors (PRRs). The result of such interaction is that the pathogen is ingested and a phagosome 
vesicle is formed.  In cases of non-phagocytic cells (e.g., epithelial cells), a pathogen can employ a specific manner 
of entering the host. Such manners involve specific host cell functions associated with the cytoskeletal dynamics 
and vesicular trafficking. Typical for bacterial pathogens are  “zipper” and “trigger” mechanisms for invading host 
cells by the activation of signaling cascades and reorganization of actin cytoskeleton (10–13). Viruses employ 
endocytosis by clathrin-dependent or clathrin-independent pathway as their mode of entry into host cell (10–13).

Commensalism
a relationship between 
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species in which one 
species benefits from 

the other without either 
harming or benefiting 

the latter 
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surface 

Symbiosis

a close and long-term 
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between two different 
biological organisms. 
At least one of  the or-
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TARGET TOOLS OF INFECTION PROCESS - HOW TO GET THROUGH? 
 
Before a pathogen can begin the infection process within the host organism it needs to overcome the particular 

defense mechanisms of that host. Once the pathogen is inside the host, it can inhabit one of two distinct niches during 
the infection process: extracellular space (including body fluids) or an intracellular niche inside the target cell.



Immediate recognition of microbes 
 
The whole recognition process begins by recognition of pathogen-associated molecular patterns (PAMPs) 

of microbes through such PRRs as, for example, members of  the toll-like receptors (TLRs) family in professional 
phagocytic cells (Tab. 1). Dimeric complexes of TLR2 with TLR1 or with TLR-6 recognize bacterial lipoproteins, 
glycolipids, lipoarabinomannans, some bacterial lipopolysaccharides, and proteins (e.g., stress proteins). The ligand 
for TLR3 is double-stranded RNA. TLR4 dimer binds lipopolysaccharide, stress proteins, or some viral proteins. 
TLR5 recognizes flagellin, which is a component of bacterial flagella and some types of bacterial secretion systems. 
TLR7 and TLR8 ligands are the nucleic acid-like structures of viruses, and TLR9 serves as receptor for fragments 
of prokaryotic DNA (e.g., non-methylated CpG motifs). The ligands for some TLRs have not yet been identified. 
There also are TLRs that appear to be restricted to just certain vertebrates. TLR11, for example, is expressed 
on murine cells but not on human cells (14,15). Numerous TLRs exist that are not expressed exclusively on cell 
surface membrane. TLR3, TLR7, TLR8 and TLR9, for example, recognize ligands that arise mostly from disrupted 
microbes in the endosomal compartment (16–19). 
 

Opsonins, including complement proteins and antibodies, also are involved in the host–pathogen interaction. 
The complement system is the main humoral component of the innate immune response and consists of more than 50 
serum-circulating proteins. The function of opsonins is to facilitate phagocytosis of microorganism via binding 
to specific receptors on the surfaces of phagocytic cells like complement receptor 3 (20,21) and  Fc-gamma receptors 
(22,23). 

 
The recognition of microbes by all these innate receptors triggers an intracellular signaling cascade that leads 

to the activation of antimicrobial effector mechanisms to promote killing and destruction of the invader (24,25). 
After a pathogen is engulfed by a professional phagocyte, the process of phagosome maturation starts immediately. 
During this maturation,  the phagosome sequentially fuses with early endosomes, late endosomes, and, finally, 
with lysosomes wherein the pathogen can be killed (26,27). This process is characterized not only by remodeling 
of the membrane but also by changes inside the phagosomes, which acquire degradative and microbicidal features, 
such as highly oxidative products (e.g., reactive oxygen species or reactive nitrogen species) and highly acidic pH 
levels (28,29). When bacteria interfere with the classical destructive endosomal pathway, the professional 
phagocytes employ the alternative mechanism of their elimination known as autophagy (30,31). This effector 
mechanism functions as an intracellular innate defense pathway in response to infection by a variety of bacteria 
and viruses (32). Although autophagy is fundamentally a ,, self-cleaning process”, it also facilitates the degradation 
of pathogens as a xenophagy process (33,34). In this case, similarly as does a phagosome, the autophagic vacuole 
(which is an autophagosome surrounded by double membrane) fuses with the lysosomes, thereby giving raise 
to an autolysosome with capacity to kill and destroy the microbe (31,35). Even in the cytosol bacteria are not protected 
from immunological surveillance. They are recognized by the cytosolic receptors known as nucleotide-binding 
oligomerization domain (NOD)-like receptors (NLRs), AIM2-like receptors (ALRs), or retinoic-acid-inducible 
gene I RIG-I-like receptors (RLRs). After binding of either PAMPs (in the case of NLRs) or nucleic acids (in the cases 
of ARLs and RLRs), these cytoplasmic receptors contribute to the initiation of defense immune response (36–40).
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Table 1. Overview of TLR receptors with their ligands and localization in cell.

TLRs TLR ligand Localization

TLR1/TLR2 glycolipids, lipopolysaccharide, bacterial lipoproteins, lipoarabinomannans, stress proteins cell surface

TLR2/TLR6 glycolipids, lipopolysaccharide, bacterial lipoproteins, lipoarabinomannans, stress proteins cell surface

TLR3 double-stranded RNA endosome

TLR4 lipopolysaccharide, stress proteins, some viral proteins cell surface

TLR5 flagellin cell surface

TLR7 nucleic acid-like structures of viruses endosome

TLR8 nucleic acid-like structures of viruses endosome

TLR9 fragments of prokaryotic DNA endosome



Inside the host cell 
 
In the cytosol of the host cells, bacteria seek out a friendly niche rich in nutrients for subsequent specific 

purposes in order to survive, replicate, and spread further. This shelter also protects them against intracellular 
microbicidal agents. Pathogens essentially can persist within the target cells in two different cell regions: the cytosol 
(and thus are known as cytosolic bacteria) or in the vacuole (thus termed intravacuolar bacteria) (41). In most 
circumstances, professional phagocytes can kill the pathogens inside lysosome vacuoles. However the intracellular 
bacteria can successfully bypass the terminal stage of phagolysosome and escape to the cytosol. A whole range 
of different pathogens are able to escape from the vacuole and/or phagosome by enzymatic lysis of membrane (42–45). 
Others are capable even of living inside the lysosomal-like compartment due to abrogation of its acidification (46). 
Some pathogens can inhibit the process of phagosome maturation (47,48), providing that the apoptotic or necrotic 
process within the host cell is modified (49–51). 

 
Pathogens like Escherichia coli (E. coli) (52), Campylobacter jejuni (53), Mycobacterium bovis BCG (54), 

some viruses such as SV40 virus (55,56) and HIV (57), as well as some parasites (58) or toxins (59,60) can hijack 
the lipid rafts or lipid metabolism in the host cell in order to help themselves to enter the phagocytes or even the host 
cell (61,62).  In this event, the proteins of lipid rafts can be detected in the phagosome and they play an irreplaceable 
role in indicating the stage of a phagosome’s maturation or in its acidification (63). There is but limited information 
about nutritional content of the host cytosol during ongoing infection. Nevertheless, different bacterial genes 
and growth requirements have been identified as crucial for bacterial cytosolic replication and growth (41). 

 
Secretion systems and quorum sensing 

 
The prokaryotic organisms exhibit the unique ability to transport their own proteins outside the cell or directly 

into the cytoplasm of the host cell. This process is called protein secretion and the secreted proteins are mainly 
responsible for virulence, hence they are usually named virulence factors. Except virulence factors, different small 
molecules and DNA are secreted through secretion system. During the infection of target cell, the secreted proteins 
mediate a number of divergent functions associated with the growth of bacteria, responses to surrounding 
environment, and/or the bacterial adhesion process. They might also manipulate the host cell in other ways. The protein 
secretion occurs through specific complex structures called secretion systems. To date, at least eight specialized 
secretion systems have been identified. (Fig. 2) (64,65). These are named by the following convention: type I 
secretion system (T1SS), T2SS, T3SS, T4SS, T5SS, T6SS, T8SS and T7SS which is unique for pathogenic 
Mycobacteria spp. Recently, T9SS has been characterized in phylum Bacteroidetes (66). The structural distinctions 
among these secretion systems reflect the multiplicity of phospholipid membrane types (67).
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Figure 2. Secretion system of bacteria.  T2SS and T5SS deliver proteins in two separate steps. Proteins are first secreted through 
Tat or Sec into periplasm and then are transferred across the outer membrane. T3SS, T4SS, and T6SS are able to transport 
virulence factor across three phospholipid membranes to the host cell. HM: host membrane; OM: outer membrane; IM: inner 
membrane; MM: mycomembrane; OMP: outer membrane protein; MFP: membrane fusion protein. ATPases and chaperones 
are shown in yellow. Taken from (71).
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How do bacteria know when they should secrete the virulence factors? The explanation lies in the ability of both 
Gram-positive and Gram-negative bacteria to communicate through extracellular signaling molecules known 
as autoinducers. This process is also known as quorum sensing (68,69). Bacteria secrete these molecules into 
the environment, and, as the bacteria population grows, they gradually increase in concentration. Upon reaching 
a certain concentration threshold, the bacterial population can activate corresponding response genes that regulate 
various behaviors, such as virulence, biofilm formation, sporulation, bioluminescence, horizontal gene transfer, 
or antibiotic production (70). 

 
PROTEIN–PROTEIN INTERACTIONS 

 
In order better to understand the molecular mechanism of pathogenesis, we must have deeper insight on the protein 

level and uncover the network of bacterial–host protein–protein interactions. The sum of all protein–protein 
interactions (PPIs) within a living cell is called the interactome (72). To study these interactions is a challenging 
process because it is a dynamic process and therefore some of those interactions occurring are transient or are located 
only in certain cellular environments. Currently, there exist a number of computational prediction methods 
or experimental methods (Fig. 3) for deciphering these intricate protein–protein interactions. Every method has 
its own advantages and disadvantages with regard to its sensitivity and specificity. Therefore, these various methods 
must usually be used in combinations to characterize, validate, and confirm the interacting proteins. This means it is 
critically important to design experiments very precisely.

Figure 3. Overview of methods for characterization of protein–protein interaction.

Computational approach in characterization of protein–protein interactions 
 
Computational prediction of PPIs could compensate for blind spots of experimental methods or it can be used 

to compile a basic outline of PPIs for further verification by experimental methods. The computational approaches 
are very extensive, because scientists always work with tremendous amounts of divergent data obtained from distinct 
databases and usually they combine two or more approaches for prediction purposes. In order substantially to increase 
the probability that a predicted interaction actually occurs and to reduce false positive rates, it is recommended that 
predicted candidates be filtered based upon their biological functions, cellular localizations, and expression profiles 
(73,74). The methods for predicting host–pathogen PPIs include interologs (75,76) and homology-based tools (74), 
structural classification of proteins (77,78), and prediction based on protein domains (79,80). Computational analyses 
usually result in enormous numbers of possible interactions which are gathered in different databases (e.g., STRING 
(81), DIP (82), MiMI (83), iPfam (84),  VirHostNet (85),  and  IntAct (86)). These databases can also be used as template 
databases for searching out new PPIs. Modern software makes it possible to visualize simple and small networks 
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in specialized graphs wherein target proteins are represented as nodes and interactions between any two proteins 
are depicted as lines between the nodes (87,88). Networks of larger size and complexity usually are visualized 
using clustering approaches. Proteins termed bottlenecks and hubs can be identified and defined in these networks. 
Bottlenecks are defined by their large degree of betweenness, which describes the frequency with which a node 
lies on the shortest path between other nodes, and these are the central proteins for many paths within the network. 
Hubs are proteins with many interacting partners. Moreover, Yu and McDermott assume that these proteins could 
play important roles as virulence factors (89,90). All the main knowledge about non-interacting proteins can be 
found in a database known as the Negatome (91). This database is the critical point for training the various PPI 
prediction algorithms and for introducing gold-standard datasets of positive interactions. 
 

An investigation for potential PPIs of E. coli, Salmonella enterica serovar typhimurium, and Yersinia pestis 
with Homo sapiens was done by Krishnadev. His team employed the homology detection approach. First they queried 
the DIP (Database of Interacting Proteins) database, which lists published interactions from large-scale two-hybrid 
screens, and homologous proteins were then aligned. Secondly, sequences of proteins encoded in both organisms 
were assigned in the iPfam database of protein family and domain interactions to reveal protein pairs based 
on domain–domain interaction. To narrow down the number of potential PPIs, the unlikely interactions were filtered 
out by localization information according to the pathophysiological niche of the pathogen and prediction 
of transmembrane regions (74). Huo et al. identified hundreds of predicted proteins pairs in a study of host–pathogen 
interaction between Mycobacterium tuberculosis and Homo sapiens. Systematic workflow for that prediction was based 
on sequence motifs. Protein sequence to predict homologs by the interolog method were selected as initial inputs. 
The identified interacting partners were then filtered based on domain–domain interaction to predict PPIs. 
Knowledge about any given protein’s subcellular location, tissue specificity, biological process, molecular function, 
and cellular component was then used in a final filtering step. All listed interactions have been kept in the PATH 
(Protein interactions of Mycobacterium tuberculosis and Human) database (79). Schleker et al. predicted 
the Salmonella–human interactome using sequence identity or domain alignment. The predicted interactions were 
further compared with known Salmonella–host PPIs. Those authors also focused on predicted binding partners 
of Salmonella effector proteins and outlined their roles in host defense responses (75). 
 
Genetic approach in characterization of protein–protein interactions 
 

The two hybrid screening was the first method to enable detection of PPIs in a living organism and it could be 
automated for high-throughput studies (92). Compared to in vitro experiments or bacterial expression systems, 
the two hybrid screening is much more suitable because yeast is more similar to higher eukaryotes (93). 
When experiments are designed, there is a choice of two different approaches – library or matrix – that can be 
applied. In the library approach, prey is represented by cDNA or open reading frames (ORFs). In the matrix 
approach, a collection of defined preys is used instead of a random collection of ORFs (94,95). The screening 
is then based on the interaction of two domains: DNA-binding domain and transcription activation domain 
of regulatory GAL4 protein. Proteins of interest are fused with individual domains, expressed in yeast, 
and, if interaction occurs between those two proteins, GAL4 protein is expressed. Otherwise, those domains 
are not functional separately (96). As bait, however, proteins that normally function as transcription activators 
cannot be used unless the regions that cause activation are deleted (97). Furthermore, the identification 
of interacting partners can involve colony polymerase chain reaction analysis and sequencing, but that makes 
this method very time-consuming (98). Among the method’s main disadvantages are the inconvenience of false 
positive interactions (99) and absence of the possibility for posttranslational modification in yeast. That means 
the detection of PPIs requiring these modifications is not possible. The way to avoid this inconvenience is through 
co-expressing of the enzyme responsible for posttranslational modification. All investigated protein–protein 
interactions are localized in the yeast nucleus, and therefore it is difficult to study PPIs for membrane proteins, 
extracellular proteins, or toxins (93). If the two hybrid screening is the method of choice for identifying potential 
interacting partners for bacterial membrane proteins, then signal sequences targeting proteins to the outer 
membrane should be removed. Membrane proteins located in yeast nucleus probably will not be in their natural 
conformations (100). The two hybrid screening is usually combined with other experimental methods to confirm 
the identified PPIs. Clements et al. used this genetic method to reveal unknown interactions between 
enterohemorrhagic bacteria E. coli and human host (101). The two hybrid screening was applied to elucidate 
host–pathogen interaction of HIV-1 Vpu protein, which is involved in degradation of CD4 domain (102). 
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This approach was also employed in a systematic search for human hepatocellular proteins interacting with NS5A 
protein in the hepatitis C virus (103) and in identifying a new role of Neisseria gonorrhoeae outer membrane 
proteins in an infectious process in host epithelial cell (100). 
 
Biochemical approach in characterization of protein–protein interactions 

 

Cross-linking method 

 
The cross-linking approach is a method whereby two proteins or two regions within a protein are joined 

by covalent bond (104). This technique offers the possibility to stabilize transient protein–protein interactions during 
the cell dynamics and the possibility to identify the interaction site (105). The entire detection process is conducted 
in physiological conditions and in vivo. However, the binding strength of interaction cannot be easily determined 
(106). The method of protein cross-linking coupled with mass spectrometry is a new and powerful one wherein 
the cross-linked peptides can be identified. This method further enables detecting specific regions of interaction, 
such as domains, single loops, or helices (107). A statistical model has evolved for data evaluation that differentiates 
true interactions from false interactions. Furthermore, this method is not limited by the size of a protein complex 
(107). The selection of a cross-linking reagent for the experiments is the most important step during protein cross-
linking that is coupled with mass spectrometry analysis (108,109). A broad spectrum of cross-linkers is available, 
including photo-cleavable and chemically cleavable cross-linkers (110,111). Among these are N-hydroxysuccinimide 
esters (112) and formaldehyde (113). A new amide bond is formed between the peptide residues (usually lysine) 
and the cross-linker and generates a new fragmentation pathway that differs from that of linear peptides (114). 
Problems could arise, however, when one wishes to determine the interaction partners for low-abundance proteins 
inside the cells. Under these circumstances, linear proteins overwhelm the cross-linked partners in the sample. 
Available solutions are based upon peptide base enrichment using strong cation exchange (115), multiple proteases 
for digestion (116), or cross-linking coupled with affinity purification (117–119) and with the further possibility 
to apply a cleavable cross-linker (120). Protein complexes are purified (by immunopurification) and followed 
by enzymatic digestion and mass spectrometry analysis after cross-linking reaction. Most cross-linkers interact 
specifically with the basic side chain of lysine residues and hinder digestion by trypsin. This results in missed 
cleavage sites and leads to long peptides and incomplete fragmentation, and therefore diminished sensitivity (116). 
To reduce these undesirable effects, multiple proteases (LysC, ArgC, AspN, and GluC) with different cleavage sites 
could be used or a cross-linking reagent that does not block lysines, such as formaldehyde, in order to form 
nonspecific cross-links (113,116). 

 
Affinity purification 

 
The method of affinity purification (AP) enables selective purification of proteins from a complex mixture 

based upon the reversible interaction between a ligand immobilized on solid support matrix and a target protein 
usually presented in crude cell lysate. Other compounds lacking the specific affinity will pass through the column 
while bounded target proteins can be readily eluted (121). For uncovering potential interaction protein partners AP 
can be used and then followed by mass spectrometry (122). In contrast to the two hybrid screening, this method 
enables characterizing PPIs while working within conditions closer to those of their physiological niches. The main 
advantages of AP include the possibilities it offers for characterizing multiprotein complexes (123) and for identifying 
posttranslational modifications (124). The target protein of interest, or bait, is fused with epitope tags on N-terminus 
or C-terminus. A wide range of special tags is available, such as Flag-tag, hexahistidine tag, streptavidin-binding 
peptide (SBP), Strep II tag, hemaglutinine (HA) tag, glutathione S-transferase (GST), calmodulin-binding peptide 
(CBP), and starch-binding domain (SBD). Another alternative consists of special green fluorescent protein (GFP) 
tags that additionally allow direct visual detection of tagged protein in the cellular environment, where they are expressed 
in the endogenous form (125). Moreover, multiple proteins can be labelled in a single experiment. In epitope tag 
selection, its characteristics such as solubility, immunogenicity, location of the epitope, size, binding, and elution 
conditions must always be kept in mind. So far, there is no universal epitope tag suitable for any kind of protein 
(126,127). There is a certain probability that tagged proteins could be folded improperly, thus altering a given 
protein’s function or mislocalizing it within the cell (128,129). During AP, many nonspecific proteins bind to the affinity 
matrix. This cannot be completely eliminated, and it raises the possibility for false positive results to occur while 
creating a huge background. Bead proteome has been characterized to address these challenges. It contains proteins 
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binding nonspecifically to the affinity matrix, which may be agarose, sepharose, or magnetic beads (130). In order 
to distinguish the real interacting partners among many false positive results or co-purifying contaminants, 
AP in combination with quantitative proteomics is offered as a method of choice (131). Mass spectrometry-based 
quantitative proteomics approaches involve metabolic labelling (e.g., stable isotope labeling by amino acids in cell 
culture, or SILAC (132)), chemical labelling (e.g., isobaric tag for relative and absolute quantitation, or  iTRAQ 
(133), and isotope-coded affinity tag, or ICAT (134)) or a label–free method (135–137) in connection with mass 
spectrometry. SILAC is carried out in vivo at the protein level and is regarded as the most accurate quantitation 
strategy. Labelling of samples at the beginning of an experimental procedure allow for minimizing experimental 
errors and sample loss (138,139). Protocols include metabolic labelling of cells, lysis of cells, mixing of lysed 
samples, and AP followed by mass spectrometric analysis. Two different experimental procedures for sample mixing 
are available: the PAM (purification after mixing) and MAP (mixing after purification) approaches. In the case 
of PAM, heavy (wild-type cells) and light (bait protein) cell lysates are mixed prior to AP. This allows 
for identification of stable PPIs and very simple sample handling. A disadvantage of this method consists 
in the exchange of proteins, as “light” labelled proteins bound to the bait are replaced by their “heavy” counterparts. 
In the MAP approach, protein purification is performed separately from equal amounts of heavy and light cell 
lysates. Afterwards, the eluates are mixed together. MAP enables potential identification of dynamically and stably 
interacting proteins, and it eliminates the problem of exchange between differentially labelled forms of proteins 
(140,141). Real interacting partners are discerned and characterized from a nonspecific background by the ratio 
of peak intensities in the mass spectrum for peptide pairs termed the abundance ratio, and this ratio should be close 
to 1 (142,143). Another possibility for reducing but not completely removing unspecific background is tandem AP 
(144,145), whereby target proteins are fused with two AP tags linked by cleavage site to allow highly selective 
two-stage protein enrichment (145). This prolonged purification can retain only stable interacting protein pairs 
while weak or transient interactions tend to be lost. Using formaldehyde cross-linking coupled with SILAC 
and tandem affinity purification, however, can covalently link the protein partners together and yield their successful 
identification (146). 

 
This method has its own technical and biological limitations. Tagged bacterial proteins are expressed ectopically 

in an uninfected eukaryotic host cell. Proteins expressed out of context could lead to false positive interactions. 
Otherwise, changing the physiology of a cell (e.g., by infection) may influence protein expression or physiology 
of organelles that ultimately can affect PPI (147). 

 
A method recently developed is known as BioID and consists in proximity-dependent labeling of proteins 

in eukaryotic cells. A prokaryotic biotin ligase (BirA) is fused with the bait protein and expressed in the mammalian 
cell, where it subsequently biotinylates the amine groups of the neighboring proteins in the presence of excess 
biotin in cultured media. Biotinylated proteins can then be isolated by affinity purification and identified 
by LC - MS analysis. BioID allows the detection of interacting and neighboring proteins in their native cellular 
environments (148–150). 

 
The bacteria most studied for PPI between host and pathogen is Salmonella. An effort has been undertaken 

to explore targets of effector proteins in host cell environment while combining AP and quantitative mass 
spectrometry-based proteomics (151,152). Another experimental procedure combines in vivo cross-linking 
with formaldehyde, tandem AP, and LC-MS quantification (153). Quantitative proteomics using the SILAC 
approach has been used to help narrow down and point out potential interaction partners in host cell for bacteria 
Ch. Trachomatis (154). Another large-scale study combining AP and mass spectrometry resulted in a comprehensive 
network of membrane proteins of Chlamydia trachomatis and its interaction partners in host proteome. The study 
elucidated mechanisms by which this pathogen establishes its privileged intracellular niche (155). 

 
Biophysical approach in characterization of protein–protein interactions 

 
The development of biosensors or sensor chips offer us a new method for analyzing and identifying new PPIs 

(156) in host–pathogen relationships, including those of bacteria vs. host cell (157–159), virus vs. host cell (160), 
and yeast vs. host cell (161,162). The detection methods usually connected with biosensors are the optical methods 
interferometry, fluorescence spectroscopy, and surface plasmon resonance (SPR) (163). Sometimes SPR is coupled 
with mass spectrometry, which provides information on the structures of molecules attached to a chip’s surface (164). 
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Distinct tags (i.e., fluorescent, affinity, or radioisotope) could be used to identify interacting proteins on a chip. 
Due to steric hindrance, however, tags could influence a protein’s ability to interact. Considering this disadvantage, 
a label-free SPR method typically is employed (165). Surface-plasmon resonance is based on measurement of small 
changes in refractive index at the sensor metal surface (166,167). Refractive index changes are induced by the binding 
of analyte to the bait proteins immobilized onto the sensor’s surface (163). Functional and full-length proteins or protein 
domains are immobilized onto a treated microscope slide. Proteins are attached onto the sensor surface, either randomly 
by using various chemicals or uniformly with orientation determined by different ligands (165). Limitations arise 
when the attached proteins are immobilized in a range of orientations or undergo partial denaturation at the chip’s 
surface. Only when the proteins are uniformly oriented and properly folded, posttranslational modifications are 
present, and the attached proteins are optimally spaced will they allow protein–protein interactions (166). Moreover, 
the wet environment is very important for proteins during the experiment (168). Benefits of these methods include 
that no labels are required, sensitivity and accuracy are high, detection limits are relatively low, and repeatability 
is good. A disadvantage of the method is that nonspecific interaction between the sensor surface and analyte can occur, 
thereby interfering with measurement (163). 

 
CONCLUSION AND PERSPECTIVES 

 
As we know, interactions between host and pathogen are always unique and differ among individual pathogenic 

species. Many protein–protein interactions between host cell and pathogen have been elucidated, but still many 
more interactions remain to be revealed. Continuing to build this knowledge will help us to understand infection 
processes, host cell defense mechanisms, and pathogens’ offensive strategies. These observations could also lead 
to uncovering potential therapeutic targets within infection processes or help to develop new vaccines. 
Identification of host–pathogen interaction takes place in a simulated host environment. It would be interesting 
to monitor and identify these interactions directly upon infection by pathogen within a host cell in its physiological 
environment and in real time. We thereby could acquire a comprehensive picture of the infection process rather 
than just parts of a puzzle which must subsequently be put together to obtain a full image, as is the case today 
of present experiments. We strove here to outline and specify the most suitable approaches for detecting PPI. 
There is no single, unique best method for doing that, and the most useful approaches seem to involve 
combinations of different methods. Thanks to advances in computational tools for PPI prediction, it is possible 
to narrow the candidate lists of potentially interacting proteins. Moreover, interactive databases enable us to find 
all PPIs previously discovered. 
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