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Since 1925

Summary

Over the past two decades, the world has witnessed the onset of three different coronaviruses: severe

acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus

(MERS-CoV) and the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Each of these

has resulted in features that have made it in some ways stronger than the previous one. Predictive epidemic

models are widely recognised as one of the most reliable and valuable tools to help policymakers take

decisions regarding the management of sanitary crises and have been helping governments by calculating

potential consequences and benefits of related containment measures. A comparison of epidemic models

that were elaborated on SARS-CoV, which caused severe acute respiratory syndrome (SARS), and on SARS-

CoV-2, which is currently causing coronavirus disease 2019 (COVID-19) will lead to an overview

of the potential reasons why the current one has led the world into an ongoing pandemic, while the other two

remained relatively delimited.
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Introduction

Only four years after the outbreaks of Ebola in West Africa (2013-2016) (1) and Zika in the Americas (2015-

2016) (2) showed their potential of causing a pandemic and disrupting society as we know it, the world is now

experiencing the first actual global pandemic since the Spanish Flu (1918-1919) (3). Increasing criticisms on how

the early COVID-19 outbreaks were managed and whether the containment measures were timely and appropriate

flooded the news. Similarly, the World Health Organization’s (WHO) declaration of COVID-19 as a “public health

emergency of international concern” (PHEIC) was deemed late (4). Nonetheless, it is also argued that the most

significant problem in the management of the pandemic was that most of the countries around the globe ignored

such a warning. The even later application of measures such as contact-tracing, massive testing and social distancing

is considered the primary catalyst of an uncontrolled spread of the disease (4).



Predictive epidemic modelling can bring advantages to policymaking in case of disease outbreaks in order

to curb the spread. An example of an epidemic model elaborated on SARS will be compared to a model elaborated

on COVID-19, given the high similarity between the two viruses. These predictive models will show similar

effectiveness of similar measures applied to similar diseases. Therefore, questioning why one became a worldwide

pandemic, whereas the other one remained limited, seems legitimate. In order to explain such a divergent outcome,

the structural characteristics of the two different viruses will be evaluated.

Methods

The present article is based on a compilatory method. Document analysis is the underlying method for each

section. The first section introduces the analytical framework within which predictive epidemic modelling can

be conceived and proceeds to describe its main elements and assets. The second section considers two existing

studies on the situations caused by the two similar viruses. The two predictive models utilised in the present

article were published in renowned peer-reviewed journals and are therefore considered a source of reliable

and authoritative information. The last section also stems from a previously published article as the primary

source for analysis.

Predictive epidemic modelling

The importance of the elaboration of mathematical epidemic models has met increasing recognition as a valid

research method across the scientific community (5). In particular, mathematical models are employed when there

is a need for evaluating the effectiveness of potential and relevant containment measures when disease outbreaks

occur. Their primary purpose is to outline the transmission process of the infectious pathogen in order to foresee

how it will spread (6). When an infectious disease spreads quickly to a high number of people, public health

authorities need to evaluate the scope of the potential danger it poses, including information as to how many people

will require medical treatment and hospitalisation, the duration of the outbreak and the chances of an extended

spread, the need for quarantines and/or vaccines, and in general, doubts related to the measures to be taken in order

to avoid catastrophic outcomes (7). Mathematical models can help find answers to these questions.

In particular, mathematical modelling is deemed more effective than other tools, which are often considered

less applicable (6). Firstly, scientific experiments are often not viable because a disease outbreak can affect a slice

of the population too big to be fully tested and incorporated in such experiments. Secondly, precisely because

of this, experiments conducted on a large scale might even be judged unethical. Thirdly, when considering statistical

analysis, the problem becomes data coverage of the outbreak (7). This means that the available data sets would

probably be inaccurate, in case of insufficient surveillance, to conduct a reliable statistical analysis, which relies

on big numbers. Indeed, surveillance would most likely include values referring to one single outbreak (in this

case, a sample), thus not allowing for a comprehensive statistical analysis since statistics is based on the analysis

of large samples (7).

The added value of mathematical modelling is that it provides a comprehensive overview of all the data available

(8). As experts proceed in their research and elaboration, they can discard models that they deem inadequate

and proceed until they find the most appropriate. Moreover, mathematical models can incorporate biological

mechanisms and social behaviours, which constitute the basis for disease spread (9). These models allow

for an interpretation of how the disease can further spread based on how people behaved by transcribing

the population's actions into numbers. Thus, they build viable hypotheses on how the situation could unfold

by creating a spread scenario. Furthermore, in most cases of a disease with high infection rates, one single person

is likely to infect others randomly, therefore not following a precise pattern (8). In these cases, mathematical models

are considered the best option to outline the potential chain of infections (9).

Across the decades, many different models have been utilised by researchers to develop overviews

of the unfolding of disease outbreaks. According to Li (7), the main approaches to mathematical modelling

of infectious diseases are statistical models, deterministic models and stochastic models. Statistical models present

some of the limitations of statistical analysis presented above, mainly related to the need for large amounts of data,

but they are still relatively employed in epidemiology and public health research. Deterministic models rely
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on the consideration of the size of both susceptible population and infectious population as continuous functions

in time. They employ differential and difference equations in order to be less dependent on large amounts of data.

Thus, they result in a clear description of dynamic interrelations between variables and in reliable predictions.

However, they are discouraged when the population size is relatively small because “stochastic disturbances” are

considered non-negligible (7). On the other hand, stochastic models focus specifically on the stochastic process

of infections, intended as a “process describing the evolution in time of a random phenomenon” (10). While

deterministic models rely on the law of large numbers, stochastic models embrace the randomness of disease

transmission, the probability of being or not being infected (11). This model is effective when applied to small

and delimited populations (e.g. hospitals), but because it relies on many numerical simulations, it is not the best

option in more extensive contexts (7).

In general, however, mathematical models present some drawbacks and difficulties associated with them.

Considering that what will be represented within the model will always be an approximation of reality, it is essential

to remember that, due to the frequent lack of precise information about a specific disease, the assumptions inserted

in the model may be mere hypotheses of the researchers. This limitation does not impede the elaboration of such

a model, but it is crucial to be remembered when the model will be interpreted. Furthermore, the importance

of validating these models through actual disease data is highlighted, even though this might not always be possible

for the testing of the hypotheses. Then, it seems clear that surveillance over the population during the initial spread

of the disease is crucial and that clearer and more comprehensive data will also allow for more precise and thus

fit-for-purpose mathematical models. Lastly, it is argued that the analysis of the model might be slowed down

or restricted by mathematical theory existing at the time of the elaboration (7).

Despite these possible limitations, the elaboration of mathematical models remains, in theory, one of the favourite

tools in predicting infectious diseases because it saves significant time and resources compared to other tools (7, 8).

The most important feature seems to be the possibility to build the model around the relevant data already

in possession of the researchers and then to be able to introduce precise and desired elements into the model and see

how this changes. This is the critical feature that makes predictions of the consequences of the various measures

adopted by the authorities possible. The idea is to add variables that represent these containment measures,

for example, vaccines, and see how the model reacts to the inclusion of new information (9). Sometimes,

to understand the basic mechanisms of infectious diseases and better predict their outcomes, it can be helpful

to compare several mathematical models of different diseases (9). In this case, models elaborated for SARS

and COVID-19 will be assessed, given that SARS-coronavirus was confirmed to be the most akin to the novel one,

as will be analysed later.

Modelling the SARS epidemic and the COVID-19 pandemic

In mid-May 2003, more than six months into the SARS outbreak, Lipsitch et al. (12) elaborated a model (shown

in Figure 1) to predict the epidemic potential of the new disease. A pivotal factor in any epidemiological analysis

is the basic reproductive number (R0). It is defined as “the expected number of secondary infectious cases generated

by an average infectious case in an entirely susceptible population” (12). “When R0 is greater than 1, the epidemic

is growing.” (13). They calculated reproductive numbers considering both an uncontrolled situation and a situation

in which containment measures were enforced. In the former scenario, which in their research was represented

by the epidemic curve of Hong Kong by the end of March 2003 with a fully susceptible population and no measures

enforced yet, the R0 was around 3 (2.2 – 3.6). Moreover, once the epidemic had started, another factor was introduced,

called effective reproductive number (Re). It calculated the secondary cases generated by an infected person when

within the population there are both susceptible and non-susceptible. The difference is that this new number considers

that some susceptible become immune, either because of prior infection or because of the introduction of external

controls, such as a vaccine. In order to end an epidemic, Re below 1 needs to be achieved and maintained (14).

Therefore, in order to reduce the original R0 = 3 to an Re < 1 (since the epidemic had already brought the basic

reproductive rate to 3 but had also started introducing non-susceptible) and stop the epidemic, the enforced control

measures needed to produce at least a two-thirds reduction in the total infectiousness through isolation of positive

cases and quarantine of potential positive cases. It was demonstrated in the second scenario that these joint measures,

including massive testing and contact tracing, would succeed, but it was also remarked that the more cases grow,

the less effective these measures will be (12).
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Many models were also elaborated since the beginning of the current pandemic of COVID-19, but a perfect

comparison between models of SARS and COVID-19 is unachievable for several reasons. These include differences

in data availability, the size of the population of the different studies, and the underlying chances for infection that

have significantly increased alongside a much more interconnected world in 2019-2020 than in 2002-2003.

The analysed epidemic model of COVID-19 is the one proposed by Giordano et al., shown in Figure 2 (15).

In this case, the researchers evaluated the potential for the spread of the disease and the potential of the control

interventions in Italy since the first outbreak on 20 February (day 1) until the beginning of April 2020 (day 46).

Figure 1. Mathematical model for SARS transmission (12).

Figure 2. Mathematical model for COVID-19 transmission (15).
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Considering the national lockdown in place since 9 March (day 18), the model predicted that, should confinement

measures have been relaxed, the R0 would have increased to 0.98 on day 50, as shown in Figure 3 (15).
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Figure 3. Epidemic evolution when, after day 50, the social distancing countermeasures are loosened (15, p. 858). (ND AS)

non-diagnosed asymptomatic; (D AS) diagnosed asymptomatic; (ND S) non-diagnosed symptomatic; (D S) diagnosed

symptomatic and (D IC) diagnosed with life-threatening symptoms (15).
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Figure 4. Epidemic evolution when the social distancing countermeasures are strengthened (15, p. 858). (ND AS) non-diagnosed

asymptomatic; (D AS) diagnosed asymptomatic; (ND S) non-diagnosed symptomatic; (D S) diagnosed symptomatic and (D IC)

diagnosed with life-threatening symptoms (15).

Instead, should they have been strengthened, it would have decreased to 0.50, as shown in Figure 4 (15). Similarly,

they argued that when parallel massive testing and effective contact tracing are enforced, the R0 could have reached

0.59 after day 50. As opposed to this, in case social-distancing measures were loosened, the R0 would have increased

again to 0.77 (15). This is to prove further that, even in the case of COVID-19, mathematical models have shown

significant improvements in the predicted spread of the virus when containment measures were effectively adopted.

Nevertheless, despite the similarities encountered between the models in the predicted efficacy of the same set

of measures for both SARS and COVID-19, it might seem curious, then, that the former caused a relatively limited

epidemic with a total of 774 deaths (13), while the latter resulted in a global (and ongoing) pandemic that counts
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nearly 2 million deaths in 13 months (16). Moreover, not even the third recent coronavirus (MERS-CoV) caused

that many fatalities, stopping at 858 globally (13). The reasons can be researched in the analysis of the coronaviruses

themselves. Asrani et al. argue that “susceptibility of humans to coronavirus outbreaks in the 21st century calls

for comparisons of the transmission history, hosts, reservoirs, and fatality rates of these viruses so that evidence-based

and effective planetary health interventions can be devised to prevent future zoonotic outbreaks.” (17).

Structural comparison of the three recent coronaviruses

The two predecessors of the current SARS-CoV-2 are the widely known SARS-CoV and MERS-CoV.

Coronaviruses were believed to only transmit among animals until SARS-CoV managed to spill over to humans.

Allegedly originated in China, SARS-CoV is thought to be related to a specific species of bats as the primary host

of this virus (18). Despite the first SARS outbreak occurring in 2003, a series of serological tests among the population

of former patients in Hong Kong revealed that the virus was present since 2001 (19). The outbreak of MERS-CoV

originated in Qatar in 2012 and was soon related to dromedary camels (20). More than half of the infected patients

were found to have had contacts with these animals and had no previous respiratory issues (21). Nonetheless, it was

later suggested that the original hosts of both viruses were bats (22). The novel coronavirus (SARS-CoV-2) is also

thought to have originated from bats in China, even though certainty on whether there was an intermediate host is

still to be confirmed (23). China is currently hampering further research on this. It has, in fact, recently denied visas

to a group of World Health Organisation (WHO) experts that were supposed to travel to China in order to investigate

the origins of the virus, thus increasing suspects of a cover-up (24).

Overall, the SARS-CoV-2 genome seems to be more similar to SARS-CoV than MERS-CoV, with 82%

similarity versus nearly 70%, respectively (25). Compared to SARS-CoV, despite the common origins, the main

differences of the current coronavirus are represented by the absence of one accessory gene and the modification

of two in its genomic structure. However, it is hypothesised that the most remarkable difference in SARS-CoV-2 is

a modification in its spike (S) protein (constituting the famous “crown” on the outside), which seems to have a signifi-

cantly enhanced affinity with the angiotensin-converting enzyme 2 (ACE2) receptors (17). These are the receptors

to which the virus particles bind, which were also the ones exploited by SARS-CoV and are predominantly located

in the lungs and renal tissues (26). This might be related to the fact that coronaviruses cause acute respiratory

syndrome and that renal failure is the leading cause of mortality for SARS infections (17).

These variations in the genome of the novel coronavirus are believed to be the underlying conditions that make

it much more easily transmissible than its predecessors. Similarly, MERS-CoV and SARS-CoV presented different

traits, and MERS disease had a much higher fatality rate than SARS. On the other hand, COVID-19 has a much

lower fatality rate, but it transmits surprisingly quickly compared to the other strains (17). This is shown by the basic

reproductive rate or R0. On the one hand, the R0 of SARS was eventually estimated to be 1.1 (27), while the R0

of MERS was significantly lower, estimated to be 0.69 without relevant containment measures, thus explaining

why it never caused any epidemic (28). On the other hand, COVID-19 is still ongoing. Therefore the estimates

have been varying significantly. According to the WHO, as of June 2020, it was calculated to be between 2 and 4

globally (29). According to a more recent study (November 2020), Billah et al. (30) estimated it to be 2.87, while

another study even set it to 4.5 in many countries (31). Moreover, Katul’s model suggests that “if intervention

measures still result in R0 > 2.7 within 44 days after the first infection, intervention is unlikely to be effective

in general for COVID-19” (31).

The last element deemed crucial in the swift spread of COVID-19 compared to the previous strains of coronavirus,

and that also poses a significant challenge to predictive models is viral shedding. It occurs when the virus starts

to replicate in the host who, thus, becomes contagious (32). This value is crucial in understanding since when and

for how long the infected patient will be able to transmit the virus. Moreover, this is a vital element to be included

in mathematical modelling because it can heavily influence the promptness necessary to enforce a quarantine in order

to keep the spread under control (33). According to a recent systematic review of existing studies on SARS-CoV-2

shedding, the mean duration of viral shedding in COVID-19 patients is calculated to be 17 days, with its peak

around 5-6 days since symptoms onset, but likely to start even before the first symptoms (13, 33). In comparison,

despite the absence of data on its mean duration, SARS-CoV shedding peaked around 12-14 days since symptoms

onset (34). The direct and crucial consequence is that, in the SARS case, there was a whole extra week available
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to trace contacts and impose quarantine before the infection spread extensively (13). Therefore, this could explain

why the containment measures adopted for COVID-19 were often ineffective.

Conclusion

Despite the valuable contribution that mathematical models were shown to provide to policymaking in scientifically

determining whether specific measures were more or less effective and the acknowledgement of their increasing

recognition, their employment is still seemingly limited. The main reason for this is that it still takes a significant

amount of time, although less than other tools, to collect the data when comprehensive data sets are not available,

elaborate the model and validate or discard the implementation of certain measures. Moreover, it is believed that

when the proposed models are deemed too complex, policymakers are unlikely to rely on them (35). Nonetheless,

the application of predictive epidemic models remains the most advantageous way to evaluate the cost-effectiveness

relation of the employed measures since national lockdowns and vaccination campaigns are likely to be expensive

both in the short and the long term. Indeed, these models can systematically absorb data and translate them

into compelling interpretations of the outer system in which policymakers must act. Furthermore, they apply

a transparent framework to an analysis that logistics, funds or ethics could otherwise impede, and that can also be

open to questioning. This strengthens its transparency and acceptance, which remains preferred over expert opinions

that are often considered not systematic or transparent (35). Therefore, predictive epidemic models remain complex

but necessary and are likely to be employed as more epidemics are expected to happen soon.
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