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Summary

Coronavirus 2 (SARS- CoV-2) leads to Coronavirus disease 2019, is recognized as a lethal epidemic in 2020.

SARS-CoV-2 is an enveloped, non-segmented, positive sense RNA virus that belongs to the beta-corona family

of viruses. The genome of this virus is about 30 kb representing 16 non-structural proteins (Nsp1-16),

four structural proteins (N, M, E, S) and nine accessory proteins are encoded by its genome, which are involved

in survival and pathogenesis the viruses. In order to produce medicines and vaccines for SARS-CoV-2, it is

essential to fully understand the genomic structure of the virus and function of its proteins. This review collects

and investigates the functional properties of SARS-CoV-2 proteins that have been reported to date.
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1. Introduction

Coronavirus (COVID-19) is the causing agent of severe acute respiratory syndrome by coronavirus 2

(SARS-CoV-2) as a lethal disease that has become an unprecedented threat to human societies since 2019 (1).



The disease was recognized by the World Health Organization (WHO) as an epidemic on March 11th, 2020 (2). Most

of the COVID-19 mortality is due to respiratory failure (3) with clinical symptoms such as fever or chills, shortness

of breath, muscle and body aches (4). In addition, recent studies have exhibited that patient mortality is significantly

more in people over 65 years of age than those aged 18 to 65 years (5). Recent reports indicate that a significant

number of patients with severe SARS-CoV-2 infection develop complications of venous and arterial

thromboembolism (6). Also, one study revealed that all patients with COVID-19 had elevated blood fibrinogen levels

at the time of hospitalization (7). In general, the SARS-CoV-2  is a family member of positive-sense RNA viruses

(8). SARS-CoV-2 has evolved due to rapid mutation and recombination with another coronavirus in the body.

These viruses can alter tissue tropism, cross from barriers, and adapt to different epidemiological conditions (9).

Phylogeny based domain similarity shows that SARS-CoV-2 is a distinct breed from other coronaviruses such as

Bat-SARS, which belong to the genus Beta-coronavirus (β-CoVs) (10). There are about 380 amino acid changes

in different proteins of the SARS-CoV-2 genome compared to the proteins in the SARS-CoV genome that have been

reported so far.  Amino acid changes for positions 348, 27 and 5 have occurred in different accessory proteins, protein

S and protein N (11). Accessory proteins play an important role in virus pathogenesis and regulation of interferon

signaling pathways and production of pro-inflammatory cytokines (9). The structure of the SARS-CoV-2 genome

includes open reading frames (ORFs) that encode accessory proteins, structural proteins, and nonstructural proteins

(NSPs). Among the 29 ORFs in SARS-CoV-2, sixteen nonstructural proteins (Nsps), four structural proteins including

spike glycoprotein (S), envelope protein (E), membrane protein (M) and nucleocapsid (N) protein, and eight accessory

proteins including ORF3a, ORF3b (NP_828853.1, not present in SARS-CoV-2), ORF6, ORF7a, ORF7b, ORF8a,

ORF8b, and ORF9b (NP_828859.1, not present in SARS-CoV-2) (12,13).  In fact, two-thirds of the virus genome

consists of ORF1a and ORF1ab, and the ORF1ab expression requires a ribosomal frame (-1) upstream of the ORF1a

stop codon, which reduces gene expression in the ORF1ab region (14). ORF1a encodes the PP1a polyprotein,

and ORF1ab causes the expression of the PP1ab polyprotein (15). Then these proteins are processed into 16 non-

structural proteins (Nsp) that encode pp1a, Nsp1-11 and pp1ab, Nsp12-16. The remaining one third of the virus

genome encodes structural and accessory proteins (14). Various morphologies of surface spikes cause different cell

proliferation. Nsps encodes enzymes involved in replication and transcription (13,14), such as important protease

(Nsp5 and Nsp3) and RNA-dependent RNA polymerase (Nsp12), helicase/triphosphatase (Nsp13), exoribonuclease

(Nsp14), endonuclease (Nsp15) (2). To combat this virus, it is necessary to identify new safe and effective treatment

strategies, including antiviral therapy, vaccines, and immunomodulatory drugs (17). The aim of this article is to evaluate

the structure and function of SARS-CoV-2 proteins and the role of these proteins in the pathogenesis of the virus.

2. The pathogenic mechanism of SARS-CoV-2 cell entry

Two spike proteins, S1 and S2, attach to the host cell membrane, and the virus enters the host cell through

endocytosis or fusion of the plasma membrane using the angiotensin-converting enzyme 2 receptor (ACE2). If entry
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Figure 1. Schematic figure of SARS-CoV-2 and its host entry mechanism.
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occurs through the endosome, cathepsin L activates spike proteins, which can also activate TMPRSS2 cellular

serine by proteinase. However, the entry route through membrane fusion is much more efficient for the virus due

to the reduced potential for stimulation of the intracellular signaling cascade in the host cell. Once inside the cell,

viral RNA is translated and amplified. RNA-dependent RNA polymerase (RdRp) transcribes RNA related to virus

structural proteins such as S, E, and M protein in the rough endoplasmic reticulum (RER) of the host cell. Translated

proteins are released on the RER surface after preparation for virion generation and subgenomic transcription.

Then, it accumulates in the Golgi apparatus and is collected through vesicles and fuses containing nucleocapsid

(N) proteins in the form of genomic RNA and collected in the cytoplasm and sent to the cell surface. Finally, viruses

made on the inner surface of the cell membrane are expelled from the host cell through exocytosis (16) (Fig 1).

3. SARS-CoV-2 proteins

SARS-CoV-2 is composed of 29 proteins with different roles in the pathogenesis process (25) (Table1 and Fig 2).
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Figure 2. Representation of (+) ss RNA of SARS-CoV-2 with leader sequence (LS), poly-A tail at 5' and 3' UTR and region

encoding proteins ORFs, spike (S), ORF3b, Envelope (E), membrane (M), ORF9b, ORF14, nucleocapsid (N) and NSPs.

Table 1. The proteins found in SARS-CoV-2.

Protein Number of
amino acid Function Role in SARS­CoV­2 life cycle of host interaction

Nsp1 180

It inhibits translation by blocking the mRNA
channel entry region in the free 40S subunits
of the 43S pre­primer complex and the empty

and, non­translating 80S ribosome

It is possible to reduce the severity of the disease
by inhibiting this protein

Nsp2 638
The association of Nsp2 with STOML2 increases

mitochondrial metabolism and decreases
apoptosis

It is possible to reduce the severity of the disease
by inhibiting this protein

Nsp3 1945 It has important protease activity to release
essential proteins for viral activity

It is possible to reduce the severity of the disease
by inhibiting this protein

Nsp4 500 Nsp4 interacts with RNF5 to resist against host
viral responses

It is possible to reduce the severity of the disease
by inhibiting this protein

Nsp5 306 It plays a key role in post­translational processing
of the replicas gene

It has an important roles in the survival
and proliferation of SARS­CoV­2

Nsp6 290
It inhibits the formation of autophagosome / au­
tolysosome vesicles of ER and plays an important

role in controlling virus replication

It has an important roles in the survival
and proliferation of SARS­CoV­2

Nsp7 83 It has a key role in the coronavirus RNA
polymerase (RdRp) activation process

It has an important roles in the survival
and proliferation of SARS­CoV­2

NSP8 198 It has a key role in the coronavirus RNA
polymerase (RdRp) activation process

It has an important roles in the survival
and proliferation of SARS­CoV­2
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Protein Number of
amino acid Function Role in SARS­CoV­2 life cycle of host interaction

Nsp9 113 Nsp9 has no specific role but it is most likely
responsible for RNA synthesis in virus Unknown

Nsp10 139 A role in RNA capping Process Unknown

Nsp11 13 Unknown Unknown

Nsp12 932 It has a key role in the coronavirus RNA
polymerase (RdRp) activation process

It has an important roles in the survival
and proliferation of SARS­CoV­2

Nsp13 601
Nsp13 is a superfamily helicase 1 that possesses

a variety of enzymatic properties including
helicase, GTPase, and ATPase

It has an important roles in the survival
and proliferation of SARS­CoV­2

Nsp14 527 A role in RNA capping Process
It helps in resisting the immune response
by different ways and aid the virus escape

from the host's immune system

Nsp15 346 It inhibits the production of interferons (IFNs)
and interferon signaling

It helps in resisting the immune response
by different ways and aid the virus escape

from the host's immune system

Nsporf16 298 A role in RNA capping process It has an important roles in the survival
and proliferation of SARS­CoV­2

ORF3a 274 ORF3a protein is involved in NF­kB activation
and NLRP3 inflammation

important roles in the survival and proliferation
of SARS­CoV­2

ORF3b 22 It has anti­IFN­I activity It can reduce the severity of the disease
by inhibiting these proteins

ORF6 61 It inhibits the production of interferon and plays
an important role in viral pathogenesis

It has an important roles in the survival
and proliferation of SARS­CoV­2

ORF7a 122 It binds to SARS­CoV­2  ribosomal transport
proteins HEATDR3 and MDN1 Unknown

ORF7b 44 It is not essential for virus replication It is not essential for virus replication in vitro

ORF8b 121 It reduces the expression of host MHC
class I proteins

It is possible to reduce the severity of the disease
by inhibiting these proteins

ORF9b 97 It inhibits the host immune response
Type I interferons (IFNs)

It helps in resisting the immune response
by different ways and aid the virus escape

from the host's immune system

ORF9c 73 It can activate immune evasion and coordinate
cellular alters vital for the life cycle of SARS­CoV­2

It helps in resisting the immune response
by different ways and aid the virus escape

from the host's immune system

ORF10 38 Unknown Unknown

Protein E 75

It plays a role in various stages of the virus life
cycle such as envelope formation, pathogenicity,
germination and assembly during the replication

cycle of the virus

It has important roles in the survival
and proliferation of SARS­CoV­2
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Protein Number of
amino acid Function Role in SARS­CoV­2 life cycle of host interaction

Protein S 1273
S1 subunits bind to the ACE2 target receptor,

whereas S2 subunits mediate the host and viral
membrane fusion

It has important roles in the survival
and proliferation of SARS­CoV­2

Protein M 222

It can mediate budding and assembling
of viral particles via employment of other

structural proteins into ER­Golgi­intermediate
compartment

It has important roles in the survival
and proliferation of SARS­CoV­2

Protein N 419
This protein is a critical factor

in the viral infections and it is involved
in the positive­strand RNA virus

It has an important roles in the survival
and proliferation of SARS­CoV­2

3.1. Nsp1 (nonstructural protein 1)

The amino acid sequence identity of Nsp1 in SARS-CoV-2 is about 84% comparison with SARS-CoV, which

could be an indicator of similar biological properties and functions. Nsp1 is encoded by ORF1a (19) and it is

expressed after entering and infecting host cells to inhibit the expression of host proteins. It has been shown that

the C-terminal domain of SARS-CoV-2 Nsp1 can inhibit translation by blocking the mRNA channel entry region

in the free 40S subunits of the 43S pre-primer complex and the empty and, non-translating 80S ribosomes (18).

Also Nsp1 binding to the ribosome leads to endonucleolytic cleavage and degradation of the mRNA host (12).

However, host mRNAs are broken by host endonucleases because Nsp1 has no endonucleolytic activity (19).

Nsp1 also suppresses the expression of type I interferon, antiviral signaling pathways and innate immune

functions of the host (18). In vitro tests show that mutations in the gene of this protein attenuate the virus. Natural

compounds such as glycyrrhizic acid including licorice and galangan, gingeronone and shogaol from Sitharathai

also interact with Nsp1. These compounds can be considered as new drug candidates against COVID-19, and it is

suggested that their validation will be followed by other researchers (19) (Fig 3).

Figure 3. Crystal Structure of Nsp1 from SARS-CoV-2, Chains A, sequence length: 180. (PDB ID: 7K3N, DOI Citation: Semper,

C., Watanabe, N., Chang, C., Savchenko, A., 2020-09-30, Crystal Structure of NSP1 from SARS-CoV-2, Center for Structural

Genomics of Infectious Diseases (CSGID). DOI: 10.2210/pdb7K3N/pdb).

3.2. Nsp2

It is a non-structural protein with less than 70% amino acid sequence identity between SARS-CoV and SARS-

CoV-2. SARS-CoV and SARS-CoV-2 interact with host cell components such as ERLIN1, ERLIN2, RNF170,

VDAC2 and STOML2. ERLIN1 and ERLIN2 have been shown to have stronger interactions in SARS-CoV than

in SARS-CoV-2; but the intensity of interaction with RNF170 in both is the same. SARS-CoV-2 through interactions

with host cell components, tends to favorable environment in host cell for survival and proliferation. For example,



the association of Nsp2 with STOML2 increases mitochondrial metabolism and decreases apoptosis, so the virus

can use these conditions to its own advantage. SARS-CoV-2 has specific interactions with FOXK1 and NR2F2,

PLD3, KIN and MAZ (20).

3.3. Nsp3

Nsp3 is a multi-domain protein, which shows differences in SARS-CoV and SARS-CoV-2 (21). Mutations

and changes in amino acids have been observed in this protein compared to SARS virus, which may explain SARS-

CoV-2 being more contagious than SARS-CoV. Nsp3 at position 543 has a serine amino acid, while the same position

of SARS virus, the amino acid glycine is observed. Also, SARS-CoV-2 Nsp3 contains proline at position 192

and due to its steric bulge and rigidity, proline can affect protein conformation, but in the same position, SARS

virus contains an apolar amino acid (22)(Fig 4).
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Figure 4. Crystal Structure of ADP ribose phosphatase of NSP3 from SARS CoV-2 in the complex with ADP ribose. Sequence

Length: 17. (PDB ID: 6W02, DOI Citation: Michalska, K., Kim, Y., Jedrzejczak, R., Maltseva, N., Endres, M., Mececar, A.,

Joachimiak, A., Center for Structural Genomics of Infectious Diseases (CSGID). DOI: 10.2210/pdb6WEY/pdb).

3.4. Nsp4

Nsp4 is a non-structural protein with 80% amino acid sequence identity reported between SARS-CoV

and SARS-CoV-2. SARS-CoV and SARS-CoV-2 interact with host cell components such as E3 ubiquitin ligase3

RNF5 (20). RNF5 interacts with VISA (virus-induced signaling adapter) in mitochondria and causes ubiquitin

and destruction. VISA becomes an important adapter for the induction of type 1 interferon and the host response

against the virus (23). As a result, Nsp4 interacts with RNF5 to resist against host viral responses. Other examples

of common interactions between SARS-CoV and SARS-CoV-2 are ERLIN1 / 2, LONP1, HERPUD1, GET4,

and BAG2. ERLIN1 and ERLIN2 can also interact with Nsp2. The glycosylation of Nsp4 in SARS-CoV

and SARSC-COV-2 induces interaction with STT3B, MAGT1, CANX and DDOST. Specific SARS-CoV-2

interactions include RPS27A, SLC39A7, and HSPA5 (20).

3.5. Nsp5 (3C‑like proteinase)

The structural gene Nsp5 is consists of 306 amino acids and two homodimers Nsp5A and Nsp5B.This protein

has 11 cleavage sites Which can produces mature nonstructural proteins (Nsps) (19, 15). Nsp5 protein belongs

to a class of cysteine protease is responsible for degradation of viral peptides in functional units for replication

and packaging of the virus within the host cells (24). ORF pp1a sequence of SARS-CoV-2 encodes Nsp5 as two

polypeptides, including the papain-like protease (PLP or Nsp3) and the chymotrypsin-like protease (3CLpro

or Nsp5), which during translation are divided into Nsps Mature (15).  3CLpro, also known as Mpro and plays

a key role in post-translational processing of the replicas gene (25). Targeting the Mpro enzyme inhibits virus

maturation and enhances the innate immune response of the host against COVID-19 (26). Studies also show that

the Nsp5 gene sequence in SARS-CoV-2 is approximately 95% similar to SARS-CoV (27) (Fig5).
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Figure5. 3C-like proteinase (Nsp5), Chains A, Sequence Length: 306. (PDB ID: 6XR3, DOI citation: Anson, B., Ghosh, A.K.,

Mesecar, A., Center for Structural Genomics of Infectious Diseases  (CSGID)X-ray Structure of SARS-CoV-2 main protease

bound to GRL-024-20 at 1.45A, 2020-07-10 .DOI: 10.2210/pdb6XR3/pdb).

3.6. Nsp6

Nsp6 has molecular weight of 34 kDa and transmembrane helices (TM) structure with aC-terminus. Nsp6,

with Nsp3 and Nsp4, stimulates new rearrangements in host cell membranes and is involved in the formation

of replication-transcription complexes (RTCs) or replication organs (RO). These replication factors also play

important role during the life cycle of the virus and viral infection and controlling virus replication. Expression

of these three proteins in the SARS-CoV causes the formation of various membrane structures in host cells,

including Dual Membrane Vesicles (DMVs), large viron-containing vacuoles (LVCV), cubic membrane structures

(CMS), and endoplasmic reticulum (ER). Protein Nsp6 also inhibits the formation of autophagosome / autolysosome

vesicles of ER. Nsp6 induces autophagy by activating the omegasome pathway (15). The autophagosomes produced

by Nsp6 are larger than before infection, but they are smaller in size and may support the coronavirus infectivity

by limiting the ability of autophagosomes (28). 322 Interactions between viral proteins have been identified

in SARS-CoV-2-Human and its host cells, which target the innate immune signaling pathway. Also The SARS-CoV-2

Nsp6 protein interacts with the Sigma receptor, which regulates the ER stress response and blocks the ER-induced

autophagosome / autolysosome vesicle, and limits virus production. Detected drugs and compounds with high potential

to inhibit COVID-19, including drugs or molecules that target Sigma-1 and Sigma-2 receptors and effectively

inhibit virus replication. These drugs or molecules include antipsychotics, haloperidol, melperone( which are used

to treat schizophrenia), and also antihistamines such as clemastine and cloperastine, the compound PB28 (29).

3.7. Nsp7, Nsp8, Nsp12

Nsp12 alone can perform the polymerase reaction with very low efficiency, while the presence of Nsp7

and Nsp8 cofactors, which are in the form of a hexadecameric and cylindrical structure, dramatically stimulates

the polymerase activity (15). It seems that the structure of the hollow cylindrical have a priming role and can

accommodate dsRNA (30) but the CryoEM structure of the Nsp12-Nsp7-Nsp8 complex of SARS-CoV-2 indicates

that the Nsp7-Nsp8 complex cannot place essential amino acids for primary activity near the Nsp12 catalytic

center; therefore, it is not considered a primacy activity (31). However, the Nsp7-Nsp8-Nsp12 complex plays

a key role in the coronavirus RNA polymerase (RdRp) activation process, which appears to be active in vitro

(14). For complete transcription and replication of the viral genome, several other Nsp subunits are required

to aggregate into a holoenzyme complex, including Nsp10, Nsp13, Nsp14, and Nsp16, whose exact functions

in RNA synthesis are not well understood  (32) (Fig6).
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a b c
Figure 6. a. Crystal structure of the Nsp7-Nsp8 complex of SARS-CoV-2. (PDB ID: 6YHU, DOI Citation:  Konkolova, E.,

Klima, M., Boura, E., Crystal structure of the nsp7-nsp8 complex of SARS-CoV-2, 2020-03-31. DOI: 10.2210/pdb6YHU/pdb);

b. The Nsp12-Nsp7-Nsp8 complex bound to the template-primer RNA and triphosphate form of Remdesivir (RTP). (PDB
ID: 7BV2, DOI Citation: Yin, W., Mao, C., Luan, X., Shen, D., Shen, Q., Su, H., Wang, X., Zhou, F., Zhao, W., Gao, M., Chang,

S., Xie, Y.C., Tian, G., Jiang, H.W., Tao, S.C., Shen, J., Jiang, Y., Jiang, H., Xu, Y., Zhang, S., Zhang, Y., Xu, H.E. The nsp12-

nsp7-nsp8 complex bound to the template-primer RNA and triphosphate form of Remdesivir(RTP), (2020) Science 368.

DOI: 10.2210/pdb7BV2/pdb); c. SARS-Coronavirus NSP12 bound to NSP8 co-factor. (PDB ID: 6NUS, DOI

citation: Kirchdoerfer, R.N., Ward, A.B. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors.

2019-02-01, National Institutes of Health/National Institute of Allergy and Infectious Diseases (NIH/NIAID).

DOI: 10.2210/pdb6NUS/pdb).

3.8. Nsp9

Nsp9 has no specific role but it is most likely responsible for RNA synthesis in virus. This non-structural protein

(113 amino acid in CoV-19) acts as a dimeric ssRNA-binding protein in viral replication. Nsp9 as an important factor

engages other proteins in the replicas complex in virus. In fact, the product derived from Nsp9, along with Nsp10,

Nsp8, and Nsp7 is located in the complex of replication. This non-structural protein can interact with nsp8 protein

for its roles. Also, Nsp9 impairment results in synthesis of the damaged viral RNAs. Nsp9 protein in SARS-CoV

possesses DNA/RNA binding activity, but it has been demonstrated that the interaction between Nsp9 and

ssDNA/ssRNA (single-stranded nucleic acid binding proteins) is non-specific and weak(33) (Fig7).

Figure 7. Peptide-bound SARS-CoV-2 Nsp9 RNA-replicas, Sequence Length: 113. (PDB ID: 6W9Q, DOI citation: Littler,

D.R., Gully, B.S., Riboldi-Tunnicliffe, A., Rossjohn, J. Peptide-bound SARS-CoV-2 Nsp9 RNA-replicase, 2020-03-23.

DOI: 10.2210/pdb6W9Q/pdb).



3.9. Nsp10, 16, 14

Coronaviruses, like eukaryotic cells has RNA capping that prevent detection by the host cell and increase

its stability. The proteins Nsp10, Nsp13, Nsp14 and Nsp16 are involved in RNA capping process (34, 35). Nsp14

is a nonstructural protein with two functions of exonuclease (ExoN) (in N-terminal region) and methyltransferase

(in C-terminal region). The primary amino acid sequence of Nsp3 aligned between SARS-CoV (NP_828862.2)

and SARS-CoV-2 (YP_009725299.1) and sequence identity and sequence similarity are 76.0% and 91.8%. Studies

on The primary amino acid sequence alignment show amino acid sequence identity between SARS-CoV and SARS-

CoV-2 is 95%(36). These enzymes remove nucleoside monophosphates from nucleic acids (3′ to 5 ′) by a mechanism

that depends on two divalent metal ions and a water molecule. In SARS-CoV, inactivation of ExoN reduces

replication. The effect of ExoN inactivation can be very different in types of viruses, even between two closely

CoVs. Experiments on SARS-CoV and MHV-A59 showed that inactivation of ExoN, although it weakens the virus,

it is not lethal while in SARS-CoV-2 and MERS-CoV viruses it is lethal and Unlike SARS-CoV and MHV, it affects

replication, which shows ExoN's vital function in SARS-CoV-2 and MERS-CoV replication. Nsp14 with methyl-

transferase activity has the action of guanine-N7-methyltransferase (N7-MTase) (34, 35, 36). It has also been shown

that SARS-CoV-2 Nsp14 can inhibit interferon production and signaling (37). Nsp16 is a 2ʹ methyltransferase

(O-Mtase -2ʹ) that causes Cap-1. The Nsp10 also binds to Nsp16 and Nsp14 and increasing their activity. Nsp16

without Nsp10 is not actived. It is predicted that Nsp10 activates nsp16 by causing structural changes (34, 35).

Nsp10 activates the exonuclease activity of Nsp14, while its effect on Nsp14 methyltransferase activity has not been

observed that Nsp10 has the ability to bind to RNA and the human adapter protein complex 2. Nsp16 and Nsp14

both are dependent on SAM (S-adenosylmethionine) (34) (Fig8).
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a b

Figure 8. a. Nonstructural protein 10 (nsp10) from SARS CoV-2. (PDB ID: 6ZCT, DOI citation:  Rogstam, A., Nyblom, M.,

Christensen, S., Sele, C., Lindvall, T., Rasmussen, A.A., Andre, I., Fisher, S.Z., Knecht, W., Kozielski, F. Nonstructural protein 10

(nsp10) from SARS CoV-2,2020-06-12. DOI: 10.2210/pdb6ZCT/pdb); b. Crystal structure of 2019-CoV Nsp16-Nsp10 complex.

(PDB ID: 6W75, DOI Citation: Minasov, G., Shuvalova, L., Rosas-Lemus, M., Kiryukhina, O., Wiersum, G., Godzik, A.,

Jaroszewski, L., Stogios, P.J., Skarina, T., Satchell, K.J.F., 1.95 Angstrom Resolution Crystal Structure of NSP10 - NSP16 Complex

from SARS-CoV-2 2020-03-25,Center for Structural Genomics of Infectious Diseases (CSGID). DOI: 10.2210/pdb6W75/pdb).

3.10. Nsp11

Nsp11 codes a short protein, which depends on the coronavirus and encompasses 13–23 residues. This protein

possesses only 13 amino acids in coronavirus 2019 and is produced by cleaving the polyprotein pp1a via

Mpro/3CLpro protease at the Nsp10/11 junction (38). The function of Nsp11 is unknown (15).



3.11. Nsp13

Nsp13 is a superfamily 1 helicase that possesses a variety of enzymatic properties including helicase, GTPase,

and ATPase. The C-terminal is acts as a helicase domain, a 597 residue cleavage product is released from pp1ab

by the 3CLpro activity, and the N terminal of this helicase is Zinc-binding domain. This protein can unwind both

DNA and RNA substrates through duplex regions of 22 and 33bp, in the 5' to 3' direction respectively. The function

of Nsp13 possesses most efficiently with GTP, dATP/ATP hydrolysis. Nsp13 not only is working with Nsp12

for genome replication, it is also responsible for mRNA capping in virus. Therefore, this protein plays an essential

function in viral RNA replication. Transcription/replication complex consists of these viral replicas that produce

the whole viral genomes. Since helicase is vital for viral proliferation and replication, thus it can be a potential

target for antiviral therapies. In other words, the prohibition of these helicases can interfere with the viral metabolism

without considerable side-effect in patients. Moreover, a couple of researches have been focused on the prevention

of helicase activity in the treatment of hepatitis and in animal model like herpes simplex virus. The property

of nonstructural protein 13 is triphosphatase function via the active site of NTPase, so this protein might also act

in the capping of viral RNAs through RNA 5′-triphosphatase activity(39) (Fig 9).
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Figure 9. SARS-CoV-2 helicase Nsp13, Chains A and B, Sequence Length: 603. (PDB ID: 7NIO_1, DOI Citation: Newman,

J.A., Yosaatmadja, Y., Douangamath, A., Bountra, C., Gileadi, O. 2021-02-12, SARS-CoV-2 helicase NSP13 Represented

by Chain A,Crystal structure of the SARS-CoV-2 helicase APO form. DOI: 10.2210/pdb7NIO/pdb).

3.12. Nsp15 (uridylate-specific endoribonuclease (Nsp15/NendoU))

Nsp15 is an endoribonuclease designated EndoU (40). This protein inhibits the production of Interferons (IFNs)

and interferon signaling (37). To create a pattern for virus synthesis, Positive-sense RNAs are replicated to negative

sense RNAs, called PUNs and at the end of 5 'has a polyuridine sequence that is predicted by fold back converted

to stem-loop structure that are identified as double-stranded RNA by host PRRs (pattern recognition receptors)

such as MDA5 (CoV specific) and PKR and OAS and can activate interferon, but EndoU cleaves the polyuridine

sequence and thus MDA5 is not activated and inhibits interferon production (40) .The amino acids His 235, His250,

Lys 290 are conserved in all coronaviruses and are involved in protein ribonuclease activity (41). Glisoxepide,

which is used to type 2 Diabetes Treatment, and Idarubicin, which is used to leukemia Treatment, are inhibited

SARS-CoV-2 EndoU. These two drugs bind to the active site of the enzyme through intermolecular interactions

with the amino acids His 235, His 250 and Lys290 and inactivate it. The effectiveness of these drugs requires further

studies in vitro and in vivo (42) (Fig 10).
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Figure 10. Cryo-EM structure of SARS-CoV-2 NSP15 NendoU at pH 6.0. (PDB ID: 7ME0, DOI citation:  Godoy, A.S., Song,

Y., Nakamura, A.M., Noske, G.D., Gawriljuk, V.O., Fernandes, R.S., Oliva, G. Cryo-EM structure of SARS-CoV-2 NSP15

NendoU at pH 6.0,2021-04-06, Sao Paulo Research Foundation (FAPESP). DOI: 10.2210/pdb7ME0/pdb).

3.13. ORF3a

The ORF3a gene encodes a protein called TRAF, the ion channel and binding domain kaolin (25), which has

274 amino acids and is the second largest sub genomic RNA in the SARS-CoV genome (43). Reports have been

shown that if a mutation occurs in the ORF3a gene region, it activates NF-κB and NLRP3 inflammation, indicating

that the ORF3a protein is involved in NF-kB activation and NLRP3 inflammation (15, 8). One of the important

features of ORF3a protein in SARS-CoV genomes is the presence of cysteine-rich domain (CRD). ORF3a protein

is abundantly expressed in infected and transfected cells and accumulates in intracellular membranes and plasma

(9). This protein plays an essential role in the spread of viral particles and causes apoptosis and necrosis in infected

cells (8). In the SARS-CoV genome, a common mutation between the ORF3a gene and the spike gene has been

observed, which indicates the function of ORF3a protein is related to spike protein (44). ORF3a also interacts

with TRAF3, which activates ubiquinone ASC and eventually activating the maturation of caspase-1 and IL-1β (43).

Reports of amino acid sequence comparisons between ORF3a proteins in SARS-CoV and SARS-CoV-2 show that

Sequence identity and sequence similarity are 72.4% and 90.2% (15) (Fig 11).

Figure 11. Cryo-EM structure of SARS-CoV-2 ORF3a. (PDB ID: 7KJR, DOI citation: Kern, D.M., Hoel, C.M., Kotecha, A.,

Brohawn, S.G. Cryo-EM structure of SARS-CoV-2 ORF3a, 2020-11-18. DOI: 10.2210/pdb7KJR/pdb).



3.14. ORF3b

The length of ORF3b is significant difference between SARS-CoV and SARS-CoV-2. Although ORF3 length

in SARS-CoV-2 is shorter (22 amino acids), it has greater anti-IFN-I activity than SARS-CoV (on average 153 amino

acids). All of the ORF3bs with higher anti-IFN I activity are located in the cytosol, while their inactive or attenuated

counterparts are found in the nucleus and cytosol. Accordingly, less Anti-IFN I activity in SARS-CoV can be attributed

to NLS (nuclear localization signal) in C-terminal SARS-CoV and its absence in SARS-CoV-2. This may justify further

pathogenicity of SARS-CoV-2 (45). The experiments resulted in a high proportion of false negatives in early infection,

but it has been seen that the combined use of ORF3b and ORF8 a highly sensitive method for detecting patients

with COVID-19. As a result, this method can be useful in serological tests to overcome false negative results (46).

3.15. ORF6

Beta-coronaviruses such as SARS-CoV and MERS-CoV encode several interferon antagonists to evade host

innate immune activation (37). SARS-CoV ORF6 protein is an accessory protein that plays an important role in viral

pathogenesis. Using a yeast two-hybrid system, ORF6 was shown to be associated with Nsp8 (15). A report showed

that the ORF6, ORF8, and N proteins in SARS-CoV-2 could inhibit the IFN-β promoter, the ISRE promoter,

and the NF-κB element (47). Also, Yuen et al. reported that the expression of multiple SARS-CoV-2 protein

could inhibit the production of interferon. Of all 29 SARS-CoV-2 proteins, ORF6 is the most interferon antagonists

that reducing the activity of the interferon-beta (IFN-beta) promoter more than 100-fold (37).

2.16. ORF7a

ORF7a in SARS (SARS-CoV) encodes a unique type I membrane protein with 122 amino acids, consisting of 15

residue N-terminal, 81 residue luminal domain, 21 residue membrane, and a 5 residue cytoplasmic tail whose function

residues unknown. ORF7a has a seven-strand structure similar to immunoglobulin (Ig) domain, and this protein

is expressed in cells infected with SARS-CoV. The short cytoplasmic tail of ORF7a has positively charged residues

near the membrane and contains the sequences Lys103, Arg104, and Lys105. These three [Arg/Lys] [X] [Arg/Lys]

sequences are found in various Golgi proteins and appear to be needed to identify the vesicular COPII system involved

in the transfer of proteins from the ER to the Golgi. It was observed that the ORF7a cytoplasmic tail was not sufficient

for the accumulation of CD4 protein on the cell surface. In contrast, the presence of two transmembrane domains,

ORF7a and cytoplasmic tail (26 amino acids), leads to the accumulation of the CD4 marker protein in Golgi (48).

ORF7a also binds SARS-CoV-2 to the ribosomal transport proteins HEATDR3 and MDN1 (26) and inhibits cellular

translation in SARS-CoV (49). A 392-nucleotide deletion starting at nt 29,424 was identified in SARS-CoV-2 ORF7a

and this deletion leads to the complete elimination of ORF7b and creates a new ORF by fusion of N-terminal ORF7a

with ORF8. This is reported the largest deletion in SARS-CoV-2. Also in WA-UW-5812, a 227 -nucleotide deletion

was detected that leading to a new ORF by fusion of the end of N- terminal ORF7a with ORF7b (Fig 12) (49).
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Figure 12. Structure of the SARS-CoV-2 ORF7A encoded accessory protein. (PDB ID: 6W37, DOI Citation:   Nelson, C.A.,

Minasov, G., Shuvalova, L., Fremont, D.H., Center for Structural Genomics of Infectious Diseases (CSGID), STRUCTURE

OF THE SARS-CoV-2 ORF7A ENCODED ACCESSORY PROTEIN. DOI: 10.2210/pdb6W37/pdb).



3.17. ORF7b

The SARS-CoV ORF7b protein is 44 amino acids and is highly hydrophobic and has no specific sequence

homology to other viral or cellular proteins. Because ORF7b is highly hydrophobic, it has been hypothesized that

ORF7b is a membrane protein and possibly a viral structural protein (50). Although ORF7b expression has not been

recorded in virus-infected cells, specific antibodies against the ORF7b protein found in the serum of people

who have improved. The ORF7b protein is an accessory proteins, and the ORF7b start codon overlaps with the ORF7a

stop codon. Reports indicate that the ORF7b protein is not essential for virus replication in vitro (51).

3.18. ORF8b

ORF8b in SARS-CoV-2 contains 121 amino acids. Recent studies have shown that this protein reduces

the expression of host MHC class I proteins. Overexpression of ORF8b can disrupt the host type I IFN signaling

pathway. This protein rapidly forms an accessory protein that interferes with the host's immune response in several

ways. Antibodies against this protein can inhibit the SARS-CoV-2 (52) (Fig 13).
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Figure 13. Structure of the SARS-COV-2 ORF8 encoded accessory protein. (PDB ID: 7JX6, DOI Citation: Hall, P.D.,

Nelson, C.A., Fremont, D.H., Center for Structural Genomics of Infectious Diseases (CSGID), 2020-08-26 STRUCTURE

OF THE SARS-CoV-2 ORF8 ENCODED ACCESSORY PROTEIN. DOI: 10.2210/pdb7JX6/pdb).

3.19. ORF9b

It is located in the mitochondrial membrane and inhibit the host immune response Type I interferons (IFNs).

Overexpression of TOM70 in IFN-I signaling pathway escapes from the ORF9b inhibitory function. Recent studies

suggest that targeting the ORF9B-TOM70 interaction could be a new treatment strategy for SARS-CoV-2.

This protein is an ORF within the N gene (nucleocapsid) that inhibits the expression of Type I interferons and targets

mitochondria (53) (Fig 14).

Figure 14. X-ray Crystallographic Structure of Orf9b from SARS-CoV-2. (PDB ID: 6Z4U, DOI Citation:  Weeks, S.D., De Graef,

S., Munawar, A. 2020-05-25. X-ray Crystallographic Structure of Orf9b from SARS-CoV-2. DOI: 10.2210/pdb6Z4U/pdb).



3.20. ORF9c

ORF9c codes 73 amino acid protein that disrupts antiviral immune response. ORF9c protein includes a putative

trans-membrane domain, which impaired antiviral processes and interacted with membrane proteins in cellular

compartments in the cell line of lung epithelial. This protein also can interact with different host proteins such as

Sigma receptors, showing its involvement in the ER stress response and lipid remodeling. The product derived

from ORF9c also may target the signaling pathway of NF-kB. Transcriptome, interactome, and proteomic studies

combined with bioinformatics tools demonstrated that the changed expression of ORF9c can impair complement

signaling, antigen presentation, and interferon signaling, while activating the signaling pathway of IL-6. The recent

works showed that ORF9c can activate immune evasion and coordinate cellular alters vital for the life cycle

of SARS-CoV-2 (54).

3.21. ORF10

The mRNA of ORF10 contains 117 nucleotides and 38 amino acids, but its function is unknown (55, 15).

A study in India also reported that no new mutations were observed in ORF10 (55) (Fig 15).
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Figure 15. Chains A, Sequence Length: 1014, Organism: Moritella marina. (PDB ID: 6RIW, DOI Citation: Santin, O.,

Moncalian, G. PfaC Keto synthase-Chain length factor 2019-04-25, Spanish Ministry of Science, Innovation, and Universities.

DOI: 10.2210/pdb6RIW/pdb).

3.22. Protein E

Protein E is the smallest structural protein in all coronaviruses (56). This protein plays an essential role

in various stages of the virus life cycle such as envelope formation, pathogenicity, germination and assembly

(57) during the replication cycle of the virus, the infected cells expressed a lot of protein E. Most of the protein

is located in the intracellular trafficking area such as ER, Golgi, ERGIC where it participates in the assembly

and germination of the virus (58). The amino acid sequence identity of E protein in SARS-CoV and SARS-

CoV-2 74.94% is similar. Protein E has a short N-terminal region and a large hydrophobic membrane domain

(involved in ion channel formation) and terminates to the hydrophilic c-terminal. The results of the human

SARS-CoV-2 E study showed that protein E is pentameric structure and consists of 35 alpha helix (α-helix)

and 40 loops and the alpha helixes and loops in the protein move randomly, then modulates ion channel activity,

which contributes to the pathogenicity of the virus. It has been shown that after binding of belachinal,

macaflavanone E, vibsanol B to protein E, are prevented random protein movement and human SARS-CoV-2

E function. Hence, it may be used as a disease control drug that requires further studies in vitro and in is vivo
(57) (Fig 16).
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Figure 16. SARS-CoV-2 Envelope Protein Transmembrane Domain: Pentameric Structure Determined by Solid-State NMR.

(PDB ID: 7K3G, DOI Citation: Mandala, V.S., Hong, M., McKay, M.J., Shcherbakov, A.S., Dregni, A.J. National Institutes

of Health/National Institute of General Medical Sciences, 2020-09-11 SARS-CoV-2 Envelope Protein Transmembrane

Domain: Pentameric Structure Determined by Solid-State NMR. DOI: 10.2210/pdb7K3G/pdb)

3.23. Protein S

The protein S, namely spike protein, identifies the human angiotensin-converting enzyme 2 (ACE2)

on the surface of host cells, mediating the attachment of the viral particles to the target cells. The spike protein

is known as a glycoprotein that its architecture has been revealed previously. The precursor of S full-length protein,

1273 amino acids in SARS-CoV-2, is cleaved into glycosylated subunits, S2 and S1. S1 subunits bind to the ACE2

target receptor, whereas S2 subunits mediate the host and viral membrane fusion. To date, multiple inhibitors like

SARS-CoV spike mouse polyclonal antibodies have been established that inhibited spike protein in SARS-CoV-2

through interfering of viral entry into cell (13) (Fig 17).

Figure 17. a. Spike glycoprotein, Chains A and B, Sequence Length: 1310. (PDB ID: 6XLU_1, DOI Citation: Ouyang, S.,

Hongxin, G. Structure of SARS-CoV-2 spike at pH 4.0 Represented by Chain A, 2020-03-03, National Natural Science

Foundation of China. DOI: 10.2210/pdb6XLU/pdb); b. Structure of the SARS-CoV-2 spike glycoprotein (closed state). (PDB

ID: 6XLU, DOI citation: Zhou, T., Tsybovsky, Y., Olia, A., Kwong, P.D. : 2020-06-29, Structure of SARS-CoV-2 spike at pH 4.0.

DOI: 10.2210/pdb6XLU/pdb).

a b



3.24. Membrane (M) (ORF5)

Membrane/matrix protein consists of 222 amino acid in COVID-19 and is much conserved. Membrane

protein is concerned as the most abundant structural component of the virion that can mediate budding and

assembling of viral particles via employment of other structural proteins into ER-Golgi-intermediate

compartment (ERGIC) (59).

3.25. Protein N

Nucleoproteins or nucleocapsid proteins can include nucleosomes, ribosomes, and nucleocapsids. This protein

is a critical factor in the viral infections and it is involved in the positive-strand RNA virus. In addition,

nucleoproteins are essential for the virus accumulation. This protein is essential in increasing the replication

and transcription efficiency of the virus genome. The nucleoprotein is located in cytoplasm and in all parts

of the micronucleus and nucleus of infected cells. This protein is involved in several functions, including virus

nucleus formation, replication, transcription, and translation. Nucleoprotein is an important structural that binds

to the RNA genome of virus particle and generates the ribonucleoprotein nucleus. Nucleoprotein is the second most

important protein after protein S that is targeted by the immune system. Protein N is an important virus antigen

that is involved in the packaging of the virus and the release of virus particles. After infection, N protein enters

the host cell to replication and packaging of viral RNA and virus release (60) (Fig 18).
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Figure 18. Crystal structure of SARS-CoV-2 nucleocapsid protein N-terminal RNA binding domain. (PDB ID: 6M3M, DOI

Citation: Chen, S., Kang, S, Crystal structure of SARS-CoV-2 nucleocapsid protein N-terminal RNA binding domain 2020-03-04,

National Natural Science Foundation of China (NSFC). DOI: 10.2210/pdb6M3M/pdb).

Conclusion

The SARS-CoV-2 virus has infected more than 116 million people worldwide so far and has affected almost

every country. Reports indicate that infection with the SARS-CoV-2 virus causes severe inflammation, damage

to the lungs, kidneys, and abnormal thrombosis. It has been reported that SARS-CoV-2 types with different

Accession numbers have on average 93.62% similarity sequence with SARS-CoV types (9). Due to SARS-CoV-2

selective pressure and evolution of SARS-CoV-2 through mutation, recognizing the proteins of this pandemic virus

would be an effective way to combat it. In this article, we examine all the amino acid sequences of SARS-CoV-2

proteins and their molecular mechanisms. It has been shown that M, E, S, N, Nsp5, Nsp6, Nsp7, Nsp8, Nsp12,

Nsp13, Nsp16, ORF3a, ORF6, Nsp14 proteins, Because of their important roles in the survival and proliferation

of SARS-CoV-2, they can be considered for pharmacological purposes and vaccine production. Also, Nsp3, Nsp1,

Nsp2, Nsp4, ORF3b, ORF8b proteins make SARS-CoV-2 virus more contagious than SARS-CoV, which can reduce

the severity of the disease by inhibiting these proteins. ORF3b and ORF7b in SARS-CoV-2 have no genomic

sequence homology with other viral proteins. Therefore, it is suggested that the sequences of these two proteins

simultaneously be detected for accurate and rapid diagnosis of SARS-CoV-2 infection from other viral infections.

The ORF9 (ORF9b and ORF9c), Nsp15, Nsp14, and ORF8b proteins respond to the immune system in a variety

of ways, helping the virus to escape the host immune system. Proteins ORF9 (ORF9b and ORF9c), Nsp15,



Nsp14 and ORF8b resist with the immune response by different ways and help the virus escape from the host's

immune system. On the other hand, the exact function of ORF7a, ORF10, Nsp11, Nsp10 and Nsp9 is not fully

understood, but it is known that ORF7a is a type I transmembrane proteins and Nsp10 activates Nsp14;

therefore, identification and inhibiting these proteins can be effective in the process of improvement and treatment

of the disease.
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