VZL 2005, 74(2):81-84

Biodosimetry Part I: Practical Need of Biodosimetry and the Most Important Mechanisms Activated After Irradiation

Zdeňka Vilasová, Jan Österreicher, Jiřina Vávrová
Univerzita obrany, katedra radiobiologie Fakulty vojenského zdravotnictví v Hradci Králové

Práce pojednává o možnostech praktického použití současných metod biodozimetrie včetně informací o jejich omezeních. V další části obsahuje ucelené shrnutí nejdůležitějších poznatků účinků ionizujícího záření na molekulární úrovni, zejména pak postradiační aktivace p53, navození bloku v G2/M buněčného cyklu a související aktivace MAP-kinázové cesty.

Keywords: Biodozimetrie; p53; G2, M blok; MAPK

This study analyzes possibilities of the use of biodosimetric methods in military practice. It also mentions information concerning limited use of these methods. Subsequently it contains a summary of the most important facts concerning radiation-induced mechanisms at the molecular level, in paticular those concerning p53 activation, induction of G2/M cell cycle arrest and related activation of the MAP kinase pathway at the molecular level.

Keywords: Biodosimetry; p53; G2/M block; MAPK

Received: October 19, 2004; Published: June 1, 2005  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Vilasová, Z., Österreicher, J., & Vávrová, J. (2005). Biodosimetry Part I: Practical Need of Biodosimetry and the Most Important Mechanisms Activated After Irradiation. Vojenské Zdravotnické Listy74(2), 81-84
Download citation

References

  1. ABBOTT, DW. - HOLT, JT. Mitogen-activated protein kinase kinase 2 activation is essential for progression through the G2/M Checkpoint arrest in cells exposed to ionizing radiation. J. Biol. Chem., 1999, vol. 274, p. 2732-2742. Go to original source... Go to PubMed...
  2. ABRAHAM, RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev., 2001, vol. 15, p. 2177-2196. Go to original source... Go to PubMed...
  3. BAKKENIST, CJ. - KASTAN, MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 2003, vol. 21, p. 486-488. Go to original source... Go to PubMed...
  4. ALESSI, DR., et al. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem., 1995, vol. 270, p. 27489-27494. Go to original source... Go to PubMed...
  5. BANIN, S., et al. Enhan-ced phosphorylation of p53 by ATM in response to DNA damage. Science, 1998, vol. 281, p. 1674-1677. Go to original source... Go to PubMed...
  6. BARAK, Y., et al. Mdm2 expression is induced by wild type p53 activity. EMBO J., 1993, vol. 12, p. 461-468. Go to original source... Go to PubMed...
  7. BULAVIN, DV., et al. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J., 1999, vol. 18, p. 6845-6854. Go to original source... Go to PubMed...
  8. CANMAN, CE., et al. Activation of the ATM kinase by ionizing radiation and phos-phorylation of p53. Science, 1998, vol. 281, p. 1677-1679. Go to original source... Go to PubMed...
  9. DATTA, et al. Ionizing radiation activates transcription of the EGR1 gene via CArG elements. Proc. Natl. Acad. Sci. USA, 1992, vol. 89, p. 10149-10153. Go to original source... Go to PubMed...
  10. D'ORAZI, G., et al. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat. Cell Biol., 2002, vol. 4, p. 11-19. Go to original source... Go to PubMed...
  11. HALLAHAN, DE., et al. C-jun and Egr-1 participate in DNA synthesis and cell survival in response to ionizing radiation exposure. J. Biol. Chem., 1995, vol. 270, p. 30303-30309. Go to original source... Go to PubMed...
  12. HALLAHAN, DE., et al. Radiation signaling mediated by Jun activation following dissociation from a cell type-specific repressor. J. Biol. Chem., 1993, vol. 268, p. 4903-4904.
  13. HALLAHAN, DE., et al. Protein kinase C mediates x-ray inducibility of nuclear signal transducers EGR1 and JUN. Proc. Natl. Acad. Sci. USA, 1991, vol. 88, p. 2156-2160. Go to original source... Go to PubMed...
  14. HIGASHIMOTO, Y., et al. Human p53 is phosphorylated on serine 6 and 9 in response to DNA damage-inducing Agents. J. Biol. Chem., 2000, vol. 275, p. 23199-23203. Go to original source... Go to PubMed...
  15. HIRAO, A., et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science, 2000, vol. 287, p. 1824-1827. Go to original source... Go to PubMed...
  16. CHAO, C., et al. Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage. Proc. Natl. Acad. Sci. USA, 2000, vol. 97, p. 11936-11941. Go to original source... Go to PubMed...
  17. CHEHAB, NH., et al. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev., 2000, vol. 14, p. 278-288. Go to original source... Go to PubMed...
  18. CHEHAB, NH., S., et al. Phosphorylation of ser-20 mediates stabilization of human p53 in response to DNA damage. Proc. Natl. Acad. Sci. USA, 1999, vol. 96, p. 13777-13782. Go to original source... Go to PubMed...
  19. CHEN, YR., et al. The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J. Biol. Chem., 1996, vol. 271, p. 31929-31936. Go to original source... Go to PubMed...
  20. LEES-MILLER, SP., et al. Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol. Cell. Biol., 1992, vol. 12, p. 5041-5049. Go to original source... Go to PubMed...
  21. ÖSTERREICHER, J. - VÁVROVÁ, J. Přednášky z radiobiologie. 1. vyd. MANUS, 2003. 116 s.
  22. ROTMAN, G. - SHILOH, Y. The ATM gene and protein: possible roles in genome surveillance, checkpoint controls and cellular defence against oxidative stress. Cancer Surv., 1997, vol. 29, p. 285-304. Go to PubMed...
  23. SAITO, S., et al. ATM mediates phosphorylation at multiple p53 sites, including ser 46, in response to ionizing radiation. J. Biol. Chem., 2002, vol. 277, p. 12491-12494. Go to original source... Go to PubMed...
  24. SEGER, R. - KREBS, EG. The MAPK signaling cascade. FASEB J., 1995, vol. 9, p. 726-735. Go to original source... Go to PubMed...
  25. SHAFMAN, TD., et al. Defective induction of stress-activated protein kinase activity in ataxia-telangiectasia cells exposed to ionizing radiation. Cancer Res., 1995, vol. 55, p. 3242-3245. Go to PubMed...
  26. SHARPLESS, NE. - DEPINHO, RA. The INK4A/ARF locus and its two gene products. Curr. Opin. Genet. Dev., 1999, vol. 9, p. 22-30. Go to original source... Go to PubMed...
  27. SHERMAN, ML., et al. Ionizing radiation regulates expression of the c-jun protooncogene. Proc. Natl. Acad. Sci. USA, 1990, vol. 87, p. 5663-5666. Go to original source... Go to PubMed...
  28. SHERR, CJ. - WEBER, JD. The ARF/p53 pathway. Curr. Opin. Genet. Dev., 2000, vol. 10, p. 94-99. Go to original source... Go to PubMed...
  29. SHIEH, SY., et al. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev., 2000, vol. 14, p. 289-300. Go to original source... Go to PubMed...
  30. SHIEH, SY. - TAYA, Y. - PRIVES, C. DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO J., 1999, vol. 18, p. 1815-1823. Go to original source... Go to PubMed...
  31. TIBBETTS, RS., et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev., 1999, vol. 13, p. 152-157. Go to original source... Go to PubMed...
  32. TSUKAMOTO, Y. - KATO, J. - IKEDA, H. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature, 1997, vol. 388, p. 900-903. Go to original source... Go to PubMed...
  33. VÁVROVÁ, J., et al. Indukce apoptózy protinádorovými látkami a ionizujícím zářením. 1. vyd. Hradec Králové, VLA JEP, 2002. 44 s. Učební texty VLA JEP. Sv. 333. ISBN 80-85109-23-9.
  34. WAHL, GM. - CARR, AM. The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat. Cell Biol., 2001, vol. 3, p. E277-E286. Go to original source... Go to PubMed...
  35. WANG, CY. - MAYO, MW. - BALDWIN, AS. Jr. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science, 1996, vol. 274, p. 784-787. Go to original source... Go to PubMed...
  36. WU, X., et al. The p53-mdm2 autoregulatory feedback loop. Genes. Dev., 1993, vol. 7, p. 1126-1132. Go to original source... Go to PubMed...
  37. YANEVA, M. - KOWALEWSKI, T. - LIEBER, MR. Interaction of DNA-dependent protein kinase with DNA and with Ku: biochemical and atomic-force microscopy studies. EMBO J., 1997, vol. 16, p. 5098-5112. Go to original source... Go to PubMed...