MMSL 2020, 89(2):66-73 | DOI: 10.31482/mmsl.2020.005

SEARCHING FOR NEW ANTIMICROBIAL AGENTS BY TARGETING BACTERIAL NAD METABOLISM: EVALUATION OF FRENTIZOLE DERIVATIVES SELECTED BY MOLECULAR DOCKINGOriginal article

Michaela Hympanova ORCID...1,3, Tomas Kucera ORCID...1, Ondrej Benek ORCID...2, Jan Korabecny ORCID...1,3*, Jan Marek ORCID...1,3*
1 Department of Epidemiology, Department of Toxicology and Military Pharmacy; Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
2 Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
3 Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic

Growing evidence of antibiotic-resistant pathogens is a serious medical issue that has to be addressed. Our antimicrobial research is focused on searching for novel small molecules that differ from the most clinically used antibiotics by chemical structure and mechanism. However, this fundamental research is like looking for a needle in a haystack. In addition, in vitro methods are time-consuming and expensive to screen large number of compounds in reasonable time. Off-target screening can represent a solution to find novel and effective antimicrobial agents that can eliminate these problems. Accordingly, molecular docking in the family of selected frentizole derivatives predicted their potential to inhibit bacterial nicotinate mononucleotide adenylyltransferase (NadD). This bacterial-essential specific enzyme has an important role in NAD metabolism. Thus, underlying mechanism of antimicrobials derived from frentizole would be interference with this biochemical process. Unfortunately, broth microdilution assay did not display any antimicrobial activity of tested compounds. On the other hand, herein we propose that off-target screening can facilitate searching for new drugs and that NadD could be a relevant target for antimicrobials.

Keywords: antimicrobials; molecular docking; NadD inhibitors; frentizole derivatives

Received: January 21, 2020; Revised: February 25, 2020; Accepted: February 25, 2020; Prepublished online: March 13, 2020; Published: June 5, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Hympanova, M., Kucera, T., Benek, O., Korabecny, J., & Marek, J. (2020). SEARCHING FOR NEW ANTIMICROBIAL AGENTS BY TARGETING BACTERIAL NAD METABOLISM: EVALUATION OF FRENTIZOLE DERIVATIVES SELECTED BY MOLECULAR DOCKING. MMSL89(2), 66-73. doi: 10.31482/mmsl.2020.005
Download citation

References

  1. Murima P, McKinney JD, Pethe K. Targeting Bacterial Central Metabolism for Drug Development. Chem Biol. 2014 Nov;21(11):1423-32. Go to original source... Go to PubMed...
  2. Sorci L, Pan Y, Eyobo Y, Rodionova I, Huang N, Kurnasov O, et al. Targeting NAD Biosynthesis in Bacterial Pathogens: Structure-Based Development of Inhibitors of Nicotinate Mononucleotide Adenylyltransferase NadD. Chem Biol. 2009 Aug;16(8):849-61. Go to original source... Go to PubMed...
  3. Gazzaniga F, Stebbins R, Chang SZ, McPeek MA, Brenner C. Microbial NAD Metabolism: Lessons from Comparative Genomics. Microbiol Mol Biol Rev. 2009 Sep 1;73(3):529-41. Go to original source... Go to PubMed...
  4. Huang N, Kolhatkar R, Eyobo Y, Sorci L, Rodionova I, Osterman AL, et al. Complexes of Bacterial Nicotinate Mononucleotide Adenylyltransferase with Inhibitors: Implication for Structure-Based Drug Design and Improvement. J Med Chem. 2010 Jul 22;53(14):5229-39. Go to original source... Go to PubMed...
  5. Hroch L, Guest P, Benek O, Soukup O, Janockova J, Dolezal R, et al. Synthesis and evaluation of frentizole-based indolyl thiourea analogues as MAO/ABAD inhibitors for Alzheimer's disease treatment. Bioorg Med Chem. 2017 Feb;25(3):1143-52. Go to original source... Go to PubMed...
  6. Benek O, Hroch L, Aitken L, Dolezal R, Guest P, Benkova M, et al. 6-Benzothiazolyl Ureas, Thioureas and Guanidines are Potent Inhibitors of ABAD/17β-HSD10 and Potential Drugs for Alzheimer"s Disease Treatment: Design, Synthesis and in vitro Evaluation. Med Chem. 2017 May 5;13(4):345-58. Go to original source...
  7. Hroch L, Benek O, Guest P, Aitken L, Soukup O, Janockova J, et al. Design, synthesis and in vitro evaluation of benzothiazole-based ureas as potential ABAD/17β-HSD10 modulators for Alzheimer's disease treatment. Bioorg Med Chem Lett. 2016 Aug;26(15):3675-8. Go to original source... Go to PubMed...
  8. Korábečný J. PROKOGNITIVNÍ POTENCIÁL BIS(7)-TAKRINU JAKO ZVAŽOVANÉHO TERAPEUTIKA NEURODEGENERATIVNÍCH ONEMOCNĚNÍ. MMSL. 2018 Mar 9;87(1):34-44. Go to original source...
  9. Desaphy J, Bret G, Rognan D, Kellenberger E. sc-PDB: a 3D-database of ligandable binding sites-10 years on. Nucleic Acids Res. 2015 Jan 28;43(D1):D399-404. Go to original source... Go to PubMed...
  10. Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006 Jun;27(8):861-74. Go to original source...
  11. Zhang H, Zhou T, Kurnasov O, Cheek S, Grishin NV, Osterman A. Crystal Structures of E. coli Nicotinate Mononucleotide Adenylyltransferase and Its Complex with Deamido-NAD. Structure. 2002 Jan;10(1):69-79. Go to original source... Go to PubMed...
  12. Han S, Forman MD, Loulakis P, Rosner MH, Xie Z, Wang H, et al. Crystal Structure of Nicotinic Acid Mononucleotide Adenylyltransferase from Staphyloccocus aureus: Structural Basis for NaAD Interaction in Functional Dimer. J Mol Biol. 2006 Jul;360(4):814-25. Go to original source... Go to PubMed...
  13. Sershon VC, Santarsiero BD, Mesecar AD. Kinetic and X-Ray Structural Evidence for Negative Cooperativity in Substrate Binding to Nicotinate Mononucleotide Adenylyltransferase (NMAT) from Bacillus anthracis. J Mol Biol. 2009 Jan;385(3):867-88. Go to original source... Go to PubMed...
  14. Werner E, Ziegler M, Lerner F, Schweiger M, Heinemann U. Crystal structure of human nicotinamide mononucleotide adenylyltransferase in complex with NMN. FEBS Lett. 2002 Apr 10;516(1-3):239-44. Go to original source... Go to PubMed...
  15. Zhou T, Kurnasov O, Tomchick DR, Binns DD, Grishin NV, Marquez VE, et al. Structure of Human Nicotinamide/Nicotinic Acid Mononucleotide Adenylyltransferase: BASIS FOR THE DUAL SUBSTRATE SPECIFICITY AND ACTIVATION OF THE ONCOLYTIC AGENT TIAZOFURIN. J Biol Chem. 2002 Apr 12;277(15):13148-54. Go to original source... Go to PubMed...
  16. Zhang X, Kurnasov OV, Karthikeyan S, Grishin NV, Osterman AL, Zhang H. Structural Characterization of a Human Cytosolic NMN/NaMN Adenylyltransferase and Implication in Human NAD Biosynthesis. J Biol Chem. 2003 Apr 11;278(15):13503-11. Go to original source... Go to PubMed...
  17. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009 Dec;30(16):2785-91. Go to original source... Go to PubMed...
  18. Sanner MF. Python: a programming language for software integration and development.
  19. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2009;NA-NA. Go to original source... Go to PubMed...
  20. Kissinger CR, Rejto PA, Pelletier LA, Thomson JA, Showalter RE, Abreo MA, et al. Crystal Structure of Human ABAD/HSD10 with a Bound Inhibitor: Implications for Design of Alzheimer's Disease Therapeutics. J Mol Biol. 2004 Sep;342(3):943-52. Go to original source... Go to PubMed...
  21. M07Ed11 | Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th Edition. Clinical & Laboratory Standards Institute.
  22. Marek J, Malinak D, Dolezal R, Soukup O, Pasdiorova M, Dolezal M, et al. Synthesis and Disinfection Effect of the Pyridine-4-aldoxime Based Salts. Molecules. 2015 Feb 24;20(3):3681-96. Go to original source... Go to PubMed...
  23. Dolezal R, Soukup O, Malinak D, Savedra RML, Marek J, Dolezalova M, et al. Towards understanding the mechanism of action of antibacterial N-alkyl-3-hydroxypyridinium salts: Biological activities, molecular modeling and QSAR studies. Eur J Med Chem. 2016 Oct 4;121:699-711. Go to original source... Go to PubMed...
  24. Rodionova IA, Schuster BM, Guinn KM, Sorci L, Scott DA, Li X, et al. Metabolic and Bactericidal Effects of Targeted Suppression of NadD and NadE Enzymes in Mycobacteria. Drusano GL, editor. mBio [Internet]. 2014 Feb 18 [cited 2019 May 20];5(1). Available from: https://mbio.asm.org/lookup/doi/10.1128/mBio.00747-13 Go to original source...
  25. O'Hara JK, Kerwin LJ, Cobbold SA, Tai J, Bedell TA, Reider PJ, et al. Targeting NAD+ Metabolism in the Human Malaria Parasite Plasmodium falciparum. Voncken F, editor. PLoS ONE. 2014 Apr 18;9(4):e94061. Go to original source... Go to PubMed...