VZL 2005, 74(5):165-171

Computer Modeling and Simulation - New Technologies in Development of Means against Combat Chemical Substances

Jiří Wiesner1, Zdeněk Kříž1, Kamil Kuča ORCID...2, Daniel Jun ORCID...2, Jaroslav Koča1
1 Masarykova univerzita, Národní centrum pro výzkum biomolekul Přírodovědecké fakulty, Brno
2 Univerzita obrany, katedra toxikologie Fakulty vojenského zdravotnictví v Hradci Králové

Reaktivace jako chemická reakce, při níž je inhibované serinové proteáze navrácena její katalytická účinnost, je známa již poměrně dlouho. Nicméně stále ještě nebyl nalezen reaktivátor, jež by byl schopen uspokojivě reaktivovat acetylcholinesterázu inhibovanou jakoukoli nervově paralytickou látkou (NPL), například sarinem, cyklosarinem, somanem, tabunem a VX. Pokusy nalézt takovou látku spočívaly do této chvíle jen v experimentálních metodách a strukturní aspekty reaktivace sledované počítačovými metodami doposud objasněny nebyly. V tomto případě se jedná o chemickou reakci, a to už samo o sobě vyžaduje použití pestré palety metod výpočetní chemie, aby mohly být vyřešeny jak strukturní, tak i energetické aspekty celého procesu.

Keywords: Acetylcholinesteráza; Reaktivace; Oximy; Molekulová dynamika; Docking; Kvantová chemie

Reactivation process, when catalytical potency to the inhibited serine protease is returned, has been known for a long time. Unfortunately, no single acetylcholinesterase (AChE) reactivator able to reactivate sufficiently AChE inhibited by all nerve agents (sarin, cyclosarin, soman, tabun or VX) has been used. Attempts to find such a compound were based on experimental methods only. However, structural aspects of reactivation examined by computer methods have not been explained till now. In this article, chemical reaction (reactivation) is described using the broad range of computer chemistry methods that is necessary for solving structural and energetical aspects of the whole process.

Keywords: Acetylcholinesterase; Reactivation; Oximes; Molecular dynamics; Docking; Quantum chemistry

Received: November 25, 2005; Published: December 1, 2005  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Wiesner, J., Kříž, Z., Kuča, K., Jun, D., & Koča, J. (2005). Computer Modeling and Simulation - New Technologies in Development of Means against Combat Chemical Substances. Vojenské Zdravotnické Listy74(5-6), 165-171
Download citation

References

  1. BAJGAR, J. Organophosphates/nerve agents poisoning: mechanism of action, diagnosis, prophylaxis and treatment. Adv. Clin. Chem., 2004, vol. 38, p. 151-216. Go to original source... Go to PubMed...
  2. PATOČKA, J. - KUČA, K. - JUN, D. Acetylcholinesterase: crucial enzyme of human body. Acta Medica (Hradec Kralove), 2004, vol. 47, p. 215-230. Go to original source... Go to PubMed...
  3. KASSA, J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. J. Toxicol. Clin. Toxicol., 2002, vol. 40, p. 803-816. Go to original source... Go to PubMed...
  4. KUČA, K., et al. Synthesis of a new reactivator of tabun inhibited acetylcholinesterase. Bioorg. Med. Chem. Lett., 2003, vol. 13, p. 3545-3547. Go to original source... Go to PubMed...
  5. HOLTJE, HD. - FOLKERS, G. Molecular Modeling. Basic Principles and Applications. New York, 1996. Go to original source...
  6. LEACH, AR. Molecular Modelling: Principles and Applications. 2nd ed. Dorchester, Prentice Hall, 2001.
  7. SALI, A. - BLUNDELL, TL. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol., 1993, vol. 234, p. 779-815. Go to original source... Go to PubMed...
  8. MARTI-RENOM, MA., et al. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct., 2000, vol. 29, p. 291-325. Go to original source... Go to PubMed...
  9. SCHWEDE, T., et al. An automated protein homology-modeling server. Nucl. Acids Res., 2003, vol. 31, p. 3381-3385. Go to original source... Go to PubMed...
  10. KUNTZ, ID. - MOUSTAKAS, DT. - LANG, PT. DOCK Version 5.2. San Francisco, University of California, 2005.
  11. Morris, GM., et al. Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. J. Comput. Chem., 1998, vol. 19, p. 1639-1662. Go to original source...
  12. JENSEN, F. Introduction to Computational Chemistry. Chichester, John Wiley and Sons, 2001.
  13. GABB, HA. - JACKSON, RM. - STERNBERG, MJE. Modelling protein docking using shape complementarity, electrostatics, and biochemical information. J. Mol. Biol., 1997, vol. 272, p. 106-120. Go to original source... Go to PubMed...
  14. FUKUI, K. A formulation of the reaction coordinate. J. Phys. Chem., 1970, vol. 74, p. 4161-4163. Go to original source...
  15. FORESMAN, JB. Exploring chemistry with electronic structure methods. Pittsburgh, Gaussian, 1996.