MMSL 2011, 80(4):159-168 | DOI: 10.31482/mmsl.2011.022

INTERLABORATORY COMPARATIVE TESTS OF BIOLOGICAL LABORATORIES OF THE NATO ARMIESOriginal article

Libor Píša1,2*, Radoslav Krupka1, Veronika Formánková1, Věra Neubauerová1, Jiří Dresler1,2, Martin Hubálek2
1 Central Military Health Institute, Prague, Czech Republic
2 Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defense, Hradec Králové, Czech Republic

One of the key requirements of the biodefense system of the Czech Armed Forces is a capability to identify the biological warfare agents (BWA). In this regard the Central Military Health Institute that is responsible for the biodefense in the Czech Armed Forces took part in 10th Annual international comparative exercise of the NATO (North Atlantic Treaty Organization) military biological laboratories. The aim of this test was the identification of Bacillus anthracis in unknown samples which were contaminated by different disinfectants. Real-time polymerase chain reaction (PCR) was chosen as optimal method for this exercise because of a robustness, speed and flexibility of this method. Due to the presence of a disinfectant the identification procedure could only be conducted after including an additional step to sample preparation. Tandem mass spectrometry was selected as a confirmatory method for the exercise. Our test result was in full agreement with the exercise design. This exercise confirmed that method of provisional identification deployable in mobile component of biodefense system of the Czech Armed Forces is sensitive and robust for use in the field conditions. The tandem mass spectrometry analysis confirmed PCR results and verified the valuable confirmatory role of mass spectrometry in the identification of biological agents.

Keywords: Bacillus anthracis strain Sterne; lightcycler R.A.P.I.D.; GeneXpert system; Tandem mass spectrometry

Received: October 31, 2011; Revised: November 26, 2011; Published: December 9, 2011  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Píša, L., Krupka, R., Formánková, V., Neubauerová, V., Dresler, J., & Hubálek, M. (2011). INTERLABORATORY COMPARATIVE TESTS OF BIOLOGICAL LABORATORIES OF THE NATO ARMIES. MMSL80(4), 159-168. doi: 10.31482/mmsl.2011.022
Download citation

References

  1. The Czech Republic Ministry of Defense strategy in protection against weapons of mass destruction, 2007, The Czech Ministry of Defence
  2. Kolsto, A.B.; Tourasse, N.J., Okstad, O.A. What sets Bacillus anthracis apart from other Bacillus species? Annu. Rev. Microbiol. 2009, 63, 451-76 Go to original source... Go to PubMed...
  3. Ellerbrok, H.; Nattermann, H.; Ozel, M.; Beutin, L.; Appel, B., Pauli, G. Rapid and sensitive identification of pathogenic and apathogenic Bacillus anthracis by real-time PCR. FEMS Microbiol. Lett. 2002, 214, 51-9 Go to original source... Go to PubMed...
  4. Hurtle, W.; Bode, E.; Kulesh, D.A.; Kaplan, R.S.; Garrison, J.; Bridge, D.; House, M.; Frye, M.S.; Loveless, B., Norwood, D. Detection of the Bacillus anthracis gyrA gene by using a minor groove binder probe. J. Clin. Microbiol. 2004, 42, 179-85 Go to original source... Go to PubMed...
  5. Jones, S.W.; Dobson, M.E.; Francesconi, S.C.; Schoske, R., Crawford, R. DNA assays for detection, identification, and individualization of select agent microorganisms. Croat. Med. J. 2005, 46, 522-9 Go to PubMed...
  6. Ko, K.S.; Kim, J.M.; Kim, J.W.; Jung, B.Y.; Kim, W.; Kim, I.J., Kook, Y.H. Identification of Bacillus anthracis by rpoB sequence analysis and multiplex PCR. J. Clin. Microbiol. 2003, 41, 2908-14 Go to original source... Go to PubMed...
  7. Qi, Y.; Patra, G.; Liang, X.; Williams, L.E.; Rose, S.; Redkar, R.J., DelVecchio, V.G. Utilization of the rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis. Appl. Environ. Microbiol. 2001, 67, 3720-7 Go to original source... Go to PubMed...
  8. Bode, E.; Hurtle, W., Norwood, D. Real-time PCR assay for a unique chromosomal sequence of Bacillus anthracis. J. Clin. Microbiol. 2004, 42, 5825-31 Go to original source... Go to PubMed...
  9. Wilson, M.K.; Vergis, J.M.; Alem, F.; Palmer, J.R.; Keane-Myers, A.M.; Brahmbhatt, T.N.; Ventura, C.L., O'Brien, A.D. Bacillus cereus G9241 Makes Anthrax Toxin and Capsule like Highly Virulent B. anthracis Ames but Behaves like Attenuated Toxigenic Nonencapsulated B. anthracis Sterne in Rabbits and Mice. Infect. Immun. 79, 3012-9 Go to PubMed...
  10. Mullis, K.B., Faloona, F.A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods. Enzymol. 1987, 155, 335-50 Go to original source... Go to PubMed...
  11. Deepak, S.; Kottapalli, K.; Rakwal, R.; Oros, G.; Rangappa, K.; Iwahashi, H.; Masuo, Y., Agrawal, G. Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes. Curr. Genomics. 2007, 8, 234-51 Go to original source... Go to PubMed...
  12. Šmarda, J.; Doškař, J.; Pantůček, R.; Růžičková, V., Koptíková, J. Methods of molecular biology, 2008, Masaryk University, Brno, p. 125 - 175
  13. Espy, M.J.; Uhl, J.R.; Sloan, L.M.; Buckwalter, S.P.; Jones, M.F.; Vetter, E.A.; Yao, J.D.; Wengenack, N.L.; Rosenblatt, J.E.; Cockerill, F.R., 3rd, Smith, T.F. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin. Microbio.l Rev. 2006, 19, 165-256
  14. Fujita, O.; Tatsumi, M.; Tanabayashi, K., Yamada, A. Development of a real-time PCR assay for detection and quantification of Francisella tularensis. Jpn. J. Infect. Dis. 2006, 59, 46-51
  15. Hoffmaster, A.R.; Fitzgerald, C.C.; Ribot, E.; Mayer, L.W., Popovic, T. Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism-associated anthrax outbreak, United States. Emerg. Infect. Dis. 2002, 8, 1111-6 Go to original source... Go to PubMed...
  16. Christensen, D.R.; Hartman, L.J.; Loveless, B.M.; Frye, M.S.; Shipley, M.A.; Bridge, D.L.; Richards, M.J.; Kaplan, R.S.; Garrison, J.; Baldwin, C.D.; Kulesh, D.A., Norwood, D.A. Detection of biological threat agents by real-time PCR: comparison of assay performance on the R.A.P.I.D., the LightCycler, and the Smart Cycler platforms. Clin. Chem. 2006, 52, 141-5 Go to original source... Go to PubMed...
  17. Loiez, C.; Herwegh, S.; Wallet, F.; Armand, S.; Guinet, F., Courcol, R.J. Detection of Yersinia pestis in sputum by real-time PCR. J. Clin. Microbiol. 2003, 41, 4873-5 Go to original source... Go to PubMed...
  18. McAvin, J.C.; McConathy, M.A.; Rohrer, A.J.; Huff, W.B.; Barnes, W.J., Lohman, K.L. A real-time fluorescence polymerase chain reaction assay for the identification of Yersinia pestis using a field-deployable thermocycler. Mil. Med. 2003, 168, 852-5 Go to original source... Go to PubMed...
  19. McAvin, J.C.; Morton, M.M.; Roudabush, R.M.; Atchley, D.H., Hickman, J.R. Identification of Francisella tularensis using real-time fluorescence polymerase chain reaction. Mil. Med. 2004, 169, 330-3 Go to original source... Go to PubMed...
  20. Newby, D.T.; Hadfield, T.L., Roberto, F.F. Real-time PCR detection of Brucella abortus: a comparative study of SYBR green I, 5'-exonuclease, and hybridization probe assays. Appl. Environ. Microbiol. 2003, 69, 4753-9 Go to original source... Go to PubMed...
  21. Redkar, R.; Rose, S.; Bricker, B., DelVecchio, V. Real-time detection of Brucella abortus, Brucella melitensis and Brucella suis. Mol. Cell. Probes. 2001, 15, 43-52 Go to original source... Go to PubMed...
  22. U'Ren, J.M.; Van Ert, M.N.; Schupp, J.M.; Easterday, W.R.; Simonson, T.S.; Okinaka, R.T.; Pearson, T., Keim, P. Use of a real-time PCR TaqMan assay for rapid identification and differentiation of Burkholderia pseudomallei and Burkholderia mallei. J. Clin. Microbiol. 2005, 43, 5771-4 Go to original source... Go to PubMed...
  23. Versage, J.L.; Severin, D.D.; Chu, M.C., Petersen, J.M. Development of a multitarget real-time TaqMan PCR assay for enhanced detection of Francisella tularensis in complex specimens. J. Clin. Microbiol. 2003, 41, 5492-9 Go to original source... Go to PubMed...
  24. Ulrich, M.P.; Christensen, D.R.; Coyne, S.R.; Craw, P.D.; Henchal, E.A.; Sakai, S.H.; Swenson, D.; Tholath, J.; Tsai, J.; Weir, A.F., Norwood, D.A. Evaluation of the Cepheid GeneXpert system for detecting Bacillus anthracis. J. Appl. Microbiol. 2006, 100, 1011-6 Go to original source... Go to PubMed...
  25. Byers, H.L.; Campbell, J.; van Ulsen, P.; Tommassen, J.; Ward, M.A.; Schulz-Knappe, P.; Prinz, T., Kuhn, K. Candidate verification of iron-regulated Neisseria meningitidis proteins using isotopic versions of tandem mass tags (TMT) and single reaction monitoring. J. Proteomics. 2009, 73, 231-9 Go to original source... Go to PubMed...
  26. Jabbour, R.E.; Deshpande, S.V.; Stanford, M.F.; Wick, C.H.; Zulich, A.W., Snyder, A.P. A protein processing filter method for bacterial identification by mass spectrometry-based proteomics. J. Proteome. Res. 2011, 10, 907-12 Go to original source... Go to PubMed...
  27. Jabbour, R.E.; Deshpande, S.V.; Wade, M.M.; Stanford, M.F.; Wick, C.H.; Zulich, A.W.; Skowronski, E.W., Snyder, A.P. Double-blind characterization of non-genome-sequenced bacteria by mass spectrometry-based proteomics. Appl. Environ. Microbiol. 2010, 76, 3637-44 Go to original source... Go to PubMed...
  28. Wilson, I.G. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 1997, 63, 3741-51 Go to original source... Go to PubMed...
  29. Wisniewski, J.R.; Zougman, A.; Nagaraj, N., Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009, 6, 359-62 Go to original source... Go to PubMed...
  30. Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J., Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76-85 Go to original source... Go to PubMed...
  31. Hoorfar, J.; Cook, N.; Malorny, B.; Wagner, M.; De Medici, D.; Abdulmawjood, A., Fach, P. Making internal amplification control mandatory for diagnostic PCR. J. Clin. Microbiol. 2003, 41, 5835 Go to original source... Go to PubMed...
  32. Abdulmawjood, A.; Roth, S., Bulte, M. Two methods for construction of internal amplification controls for the detection of Escherichia coli O157 by polymerase chain reaction. Mol. Cell. Probes. 2002, 16, 335-9 Go to original source... Go to PubMed...
  33. Hartman, L.J.; Coyne, S.R., Norwood, D.A. Development of a novel internal positive control for Taqman based assays. Mol. Cell. Probes. 2005, 19, 51-9 Go to original source... Go to PubMed...
  34. Hoorfar, J.; Malorny, B.; Abdulmawjood, A.; Cook, N.; Wagner, M., Fach, P. Practical considerations in design of internal amplification controls for diagnostic PCR assays. J. Clin. Microbiol. 2004, 42, 1863-8 Go to original source... Go to PubMed...