MMSL 2016, 85(1):2-7 | DOI: 10.31482/mmsl.2016.001
HI-6 TREATMENT DOES NOT REACTIVATE SARIN INHIBITED ACETYLCHOLINESTERASE ACTIVITY IN DOG BRAIN WHEN ADMINISTERED IN HUMAN THERAPEUTICAL DOSE 30 MINUTES AFTER THE POISONINGOriginal article
- 1 Department of Neurology, University Hospital, Hradec Kralove, Czech Republic
- 2 Department of Histology and Embryology, Medical faculty of Charles University, Simkova 870, 500 38 Hradec Kralove, Czech Republic
- 3 Department of Anatomy, Medical faculty of Charles University, Simkova 870, 500 38 Hradec Kralove, Czech Republic
- 4 Department of Toxicology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- 5 Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
Purpose: The aim of our study was to determine and compare the activity of acetylcholinesterase (AChE) in different parts of dog brain after the exposure to nerve agent sarin with or without HI-6 oxime treatment.
Material and methods: Before intoxication, beagle dogs were intravenously anaesthetized and premedicated with atropine sulphate (0.01 mg/kg). Three experimental groups were established - control, sarin (0.03 mg/kg, intramuscularly, 5 min after anaesthesia onset), and sarin + HI-6 dichloride (11.4 mg/kg, intramuscularly, 30 min after sarin poisoning). Brain (amygdaloid body, head of caudate nucleus, somatosensory cortex, Amon's horn of hippocampus, hypothalamus, brain stem ventral respiratory group, and medial nuclei of thalamus) samples were taken 4 h after sarin administration. AChE activity was detected by histochemistry using the Karnovsky-Roots method and computer image analysis.
Results: Sarin poisoning decreased AChE activity in all selected brain areas. HI-6 did not affect this outcome.
Conclusion: HI-6 does not reactivate brain AChE in dogs when administered 30 min after sarin poisoning.
Keywords: sarin; HI-6; quantitative histochemistry; dog; acetylcholinesterase
Received: January 26, 2016; Revised: February 15, 2016; Published: March 4, 2016 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Marrs, T. C. Organophosphate poisoning. Pharmacol. Ther. 1993, 58, 51-66.
Go to original source...
- Bajgar, J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004, 38, 151-216.
Go to original source...
- Kuča, K.; Musílek, K.; Jun, D.; Pohanka, M.; Karasová, J. Z.; Novotný, L; Musilova, L. Could oxime HI-6 really be considered as "broad-spectrum" antidote? J. Appl. Biomed. 2009, 7, 143-149.
- Karasova, J. Z.; Pohanka, M.; Musilek, K.; Zemek, F.; Kuca, K. Passive diffusion of acetylcholinesterase oxime reactivators through the blood-brain barrier: Influence of molecular structure. Toxicol. in Vitro. 2010, 24, 1838-1844.
Go to original source...
Go to PubMed...
- Bajgar, J; Hajek, P; Slizova, D; Krs, O; Fusek, J; Kuca, K; Jun, D.; Bartosova, L.; Blaha, V. Changes of acetylcholinesterase activity in different rat brain areas following intoxication with nerve agents: Biochemical and histochemical study. Chem. Biol. Interact. 2007, 165, 14-21.
Go to original source...
Go to PubMed...
- Bajgar, J.; Hajek, P.; Karasova, J.; Slizova, D.; Krs, O.; Kuca, K.; Jun, D.; Fusek, J.; Capek, L. Inhibition of acetylcholinesterase in different structures of the rat brain following soman intoxication pretreated with huperzine A. Int. J. Mol. Sci. 2007, 8, 1165-1176.
Go to original source...
- Ma, T.; Cai, Z.; Wellman, S. E.; Ho, I. K. A quantitative histochemistry technique for measuring regional distribution of acetylcholinesterase in the brain using digital scanning densitometry. Anal. Biochem. 2001, 296, 18-28.
Go to original source...
Go to PubMed...
- Bajgar, J.; Fusek, J.; Kassa, J.; Jun, D.; Kuca, K.; Hajek, P. An attempt to assess functionally minimal acetylcholinesterase activity necessary for survival of rats intoxicated with nerve agents. Chem. Biol. Interact. 2008, 175, 281-285.
Go to original source...
Go to PubMed...
- EFSA Scientific Committee. Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured data EFSA J. 2012, 10, 2579.
Go to original source...
- Vožeh, F. Stereotaktický atlas mozku psa plemene beagle ve stáří 2 a 5 měsíců. VEDA, Bratislava 1984.
- Lojda, Z.; Gossrau, R. R., Shiebler, T. H. Enzyme Histochemistry - A Laboratory Manual. Springer Verlang, New York 1979.
Go to original source...
- Joosen, M. J.; van der Schans, M. J.; van Dijk, C. G.; Kuijpers, W. C.; Wortelboer, H. M.; van Helden, H. P. Increasing oxime efficacy by blood-brain barrier modulation. Toxicol. Lett. 2011, 206, 67-71.
Go to original source...
Go to PubMed...
- Kassa, J.; Karasova, J. Z.; Sepsova, V.; Caisberger, F. The benefit of combinations of oximes for the reactivating and therapeutic efficacy of antidotal treatment of sarin poisoning in rats and mice. Basic Clin. Pharmacol. Toxicol. 2011, 109, 30-34.
Go to original source...
Go to PubMed...
- Kassa, J.; Kunesova, G. The benefit of combination of oximes for the neuroprotective efficacy of antidotal treatment of sarin-poisoned rats. Toxicol. Mech. Methods. 2012, 22, 260-267.
Go to original source...
Go to PubMed...
- Kassa, J.; Misik, J.; Karasova, J. Z. A comparison of the potency of a novel bispyridinium oxime K203 and currently available oximes (obidoxime, HI-6) to counteract the acute neurotoxicity of sarin in rats. Basic Clin. Pharmacol. Toxicol. 2012, 111, 333-338.
Go to original source...
Go to PubMed...
- Kassa, J.; Sepsova, V.; Matouskova, L.; Horova, A.; Musilek, K. A comparison of the reactivating and therapeutic efficacy of two novel bispyridinium oximes (K727, K733) with the oxime HI-6 and obidoxime in sarin-poisoned rats and mice. Toxicol. Mech. Methods. 2015, 25, 229-233.
Go to original source...
Go to PubMed...
- RamaRao, G.; Afley, P.; Acharya, J.; Bhattacharya, B. K. Efficacy of antidotes (midazolam, atropine and HI-6) on nerve agent induced molecular and neuropathological changes. BMC Neurosci. 2014, 15, 47.
Go to original source...
Go to PubMed...
- Aurbek, N.; Thiermann, H.; Eyer, F.; Eyer, P.; Worek, F. Suitability of human butyrylcholinesterase as therapeutic marker and pseudo catalytic scavenger in organophosphate poisoning: a kinetic analysis. Toxicology. 2009, 259, 133-139.
Go to original source...
Go to PubMed...
- Doctor, B. P.; Blick D. W.; Caranto, G.; Castro, C. A.; Gentry, M. K.; Larrison, R.; Maxwell, D. M.; Murphy, M. R.; Schutz, M.; Waibel, K. Cholinesterases as scavengers for organophosphorus compounds: protection of primate performance against soman toxicity. Chem. Biol. Interact. 1993, 87, 285-293.
Go to original source...
Go to PubMed...
- Kovarik, Z.; Radić, Z.; Berman, H. A.; Taylor, P. Mutation of acetylcholinesterase to enhance oxime-assisted catalytic turnover of methylphosphonates. Toxicology. 2007, 233, 79-84.
Go to original source...
Go to PubMed...