MMSL 2011, 80(3):118-128 | DOI: 10.31482/mmsl.2011.018
THE DISULFIDE BOND FORMATION AND ITS RELATIONSHIP TO BACTERIAL PATHOGENICITY OF THREE IMPORTANT GRAM-NEGATIVE BACTERIAReview article
- 1 Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
- 2 Masaryk Memorial Cancer Institute, Brno, Czech Republic
Disulfide bond formation is necessary for a correct folding and a proper function of many secreted proteins. We know that many of these proteins are involved in bacterial virulence and pathogenesis. The best known pathways of disulfide bond formation and isomerization belong to Escherichia coli (E. coli). This Gram-negative bacterium is usually used as a model organism. This review is aimed initially at introduction to E. coli oxido-reductase enzymatic system. The next part is interested in proteins resembling these from E. coli and their relation to virulence and pathogenesis. We have choosen three important Gram-negative pathogens, Neisseria meningitidis (N. meningitidis), Yersinia pestis (Y. pestis) and Francisella tularensis (F. tularensis), because of their high virulence, infectivity, ability to cause severe infections and absence of appropriate vaccines.
Keywords: Disulfide bond formation; DsbA; DsbB; DsbC; DsbD; DsbE; CcmG; Neisseria meningitidis; Yersinia pestis; Francisella tularensis
Received: June 27, 2011; Revised: August 24, 2011; Published: September 9, 2011 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- ANDERSEN, C.L. et al. A new Escherichia coli gene, dsbG, encodes a periplasmic protein involved in disulphide bond formation, required for recycling DsbA/DsbB and DsbC redox proteins. Mol. Microbiol. 1997, 26, p. 121-132.
Go to original source...
Go to PubMed...
- BADER, M. et al. Oxidative protein folding is driven by the electron transport system. Cell. 1999, 98, p. 217-227.
Go to original source...
Go to PubMed...
- BARDWELL, J.C.A., McGOVERN, K., BOOKWITH, J. Identification of a protein required for disulfide bond formation in vivo. Cell. 1991, 67, p. 581-589.
Go to original source...
Go to PubMed...
- BESSETTE, P.H. et al. In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidoreductase DsbG. J. Biol. Chem. 1999, 274, p. 7784-7792.
Go to original source...
Go to PubMed...
- BUTLER T. Plague into the 21st century. Clin. Infect. Dis. 2009, 49, p. 736-742.
Go to original source...
Go to PubMed...
- CARVALHO, A.P., FERNANDES, P.A., RAMOS, M.J. Similarities and differences in the thioredoxin superfamily. Prog. Biophys. Mol. Bio. 2006, 91, p. 229-248.
Go to original source...
Go to PubMed...
- CHEN, J. et al. Chaperone activity of DsbC. J. Biol. Chem. 1999, 274, p. 19601-19605.
Go to original source...
Go to PubMed...
- CHO, S.-H. et al. Redox-active cysteines of a membrane electron transporter DsbD show dual compartment accessibility. EMBO J. 2007, 26, p. 3509 3520.
Go to original source...
Go to PubMed...
- DENNIS, D.T. et al. Tularemia as a biological weapon-medical and public health management. JAMA. 2001, 285, p. 2763-2773.
- EDELING, M.A. et al. Structure of CcmG/DsbE at 1.14 Å resolution: high-fidelity reducing activity in an indiscriminately oxidizing environment. Structure. 2002, 10, p. 973-979.
Go to original source...
Go to PubMed...
- FABIANEK, R.A., HOFER, T., THÖNY-MEYER, L. Characterization of the Escherichia coli CcmH protein reveals new insights into the redox pathway required for cytochrome c maturation. Arch. Microbiol. 1999, 171, p. 92-100.
Go to original source...
Go to PubMed...
- FELDMAN, K.A. et al. An outbreak of primary pneumonic tularemia on Martha's vineyard. N. Engl. J. Med. 2001, 345, p. 1601-1606.
Go to original source...
Go to PubMed...
- GALYOV, E.E. et al. Expression of the envelope antigen F1 of Yersinia pestis is mediated by the product of caf1M having homology with the chaperone protein PapD of Escherichia coli. FEBS Lett. 1991, 286, p. 79-82.
Go to original source...
Go to PubMed...
- GALYOV, E.E. et al. Nucleotide sequence of the Yersinia pestis gene encoding F1 antigen and the primary structure of the protein. FEBS Lett. 1990, 277, p. 230 232.
Go to original source...
Go to PubMed...
- GILBERT, H.F. Molecular and cellular aspects of thiol/disulfide exchange. Adv. Enzymol. 1990, 63, p. 69-172.
Go to original source...
Go to PubMed...
- GLEITER, S., BARDWELL, J.C.A. Disulfide bond isomerization in prokaryotes. Biochim. Biophys. Acta. 2008, 1783, p. 530-534.
Go to original source...
Go to PubMed...
- GOULDING, C.W. et al. Gram-positive DsbE proteins function differently from Gram-negative DsbE homologs. J. Biol. Chem. 2004, 279, p. 3516-3524.
Go to original source...
Go to PubMed...
- GRIMSHAW, J.P.A et al. DsbL and DsbI form specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenic Escherichia coli. J. Mol. Biol. 2008, 380, p. 667-680.
Go to original source...
Go to PubMed...
- GUDDAT, L.W., BARDWELL, J.C.A., MARTIN, J.L. Crystal structures of reduced and oxidized DsbA: investigation of domain motion and thiolate stabilization. Structure. 1998, 6, p. 757-767.
Go to original source...
Go to PubMed...
- HERAS, B. et al. Crystal structures of the DsbG disulfide isomerase reveal an unstable disulfide. Proc. Natl. Acad. Sci. USA. 2004, 101, p. 8876-8881.
Go to original source...
Go to PubMed...
- HERAS, B. et al. DSB proteins and bacterial pathogenicity. Microbiology. 2009, 7, p. 215-225.
Go to original source...
Go to PubMed...
- HERAS, B. et al. The name's bond......disulfide bond. Curr. Opin. Struc. Biol. 2007, 17, p. 691-698.
Go to original source...
Go to PubMed...
- HINIKER, A., BARDWELL, J.C.A. In vivo substrate specificity of periplasmic disulfide oxidoreductases. J. Biol. Chem. 2004, 279, p. 12967-12973.
Go to original source...
Go to PubMed...
- INABA, K. et al. Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Cell. 2006, 127, p. 789 801.
Go to original source...
Go to PubMed...
- INABA, K. Protein disulfide bond generation in Escherichia coli DsbB-DsbA. J. Synchrotron. Rad. 2008, 15, p. 199-201.
Go to original source...
Go to PubMed...
- ITO, K., INABA. K. The disulfide bond formation (Dsb) system. Curr. Opin. Struc. Biol. 2008, 18, p. 450-458.
Go to original source...
Go to PubMed...
- JACKSON, M.W., PLANO, G.V. DsbA is required for stable expression of current membrane protein YscC and for efficient Yop secretion in Yersinia pestis. J. Bacteriol. 1999, 181, p. 5126 5130.
Go to original source...
Go to PubMed...
- KADOKURA, H. et al. Snapshot of DsbA in action: detection of proteins in the process of oxidative folding. Science. 2004, 303, p. 534 537.
Go to original source...
Go to PubMed...
- KATZEN, F., BECKWITH, J. Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell. 2000, 103, p. 769-779.
Go to original source...
Go to PubMed...
- KIKUCHI, H. et al. Brucella abortus D-alanyl-D-alanine carboxypeptidase contributes to its intracellular replication and resistance against nitric oxide. FEMS Microbiol. Lett. 2006, 256, p. 120-125.
Go to original source...
Go to PubMed...
- KORTEPETER, M.G., PARKER G.W. Potential biological weapons threats. Emerg. Infect. Dis. 1999, 5, p. 523-527.
Go to original source...
Go to PubMed...
- LAFAYE, C. et al. Biochemical and structural study of the homologues of the thiol-disulfide oxidoreductase DsbA in Neisseria meningitidis. J. Mol. Biol. 2009, 392, p. 952-966.
Go to original source...
Go to PubMed...
- LI, Q., HU, H-y., XU, G-j. Biochemical characterization of the thioredoxin domain of Escherichia coli DsbE protein reveals a weak reductant. Biochem. Bioph. Res. Co. 2001, 283, p. 849-853.
Go to original source...
Go to PubMed...
- MACELA, A. et al. Infekční choroby a intracelulární parazitismus bakterií, 1. edition. Praha: Grada, 2006. ISBN 80-247-0664-4.
- McCARTHY, A.A. et al. Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nature Struct. Biol. 2000, 7, p. 196-199.
Go to PubMed...
- MESSENS, J., COLLET, J-F. Pathways of disulfide bond formation in Escherichia coli. Int. J. Biochem. Cell B. 2006, 38, p. 1050-1062.
Go to original source...
Go to PubMed...
- MESSENS, J. et al. The oxidase DsbA folds a protein with a nonconsecutive disulfide. J. Biol. Chem. 2007, 282, p. 31302-31307.
Go to original source...
Go to PubMed...
- MICHIELS, T. et al. Analysis of virC, an operon involved in the secretion of Yop proteins by Yersinia enterocolitica. J. Bacteriol. 1991, 173, p. 4994-5009.
Go to original source...
Go to PubMed...
- MICHIELS, T. et al. Secretion of Yop proteins by Yersiniae. Infekt. Immun. 1990, 58, p. 2840-2849.
Go to original source...
Go to PubMed...
- MISSIAKAS, D., GEORGOPOULOS, C., RAINA, S. Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in formation in disulfide bond in vivo. Proc. Natl. Acad. Sci. 1993, 90, p. 7084-7088.
Go to original source...
Go to PubMed...
- NAKAMOTO, H., BARDWELL, J.C.A. Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm. Biochim. Biophys. Acta. 2004, 1694, p. 111-119.
Go to original source...
Go to PubMed...
- PAVKOVA, I. et al. Comparative proteome analysis of fraction enriched for membrane-associated proteins from Francisella tularensis subsp. tularensis and F. tularensis subsp. holarctica. J. Proteome. Res. 2006, 5, p. 3125-3134.
Go to original source...
Go to PubMed...
- PECHOUS, R.D., McCarthy, T.R., ZAHRT, T.C. Working toward the future: insights into Francisella tularensis pathogenesis and vaccine development. Microbiol. Mol. Biol. R 2009, 73, p. 684-711.
Go to original source...
Go to PubMed...
- PERRY, R.D., FETHERSTON, J.D. Yersinia pestis-ethiologic agent of plague. Clin. Microbiol. Rev. 1997, 10, p. 35-66.
Go to original source...
Go to PubMed...
- PETERSEN, J.M., MEAD, P.S., SCHRIEFER, M.E. Francisella tularensis: an arthropod-borne pathogen. Vet. Res. 2009, 40, p. 1-9.
Go to original source...
Go to PubMed...
- PETROVSKAYA, L.E. et al. Chaperone Caf1M stabilizes hybrid proteins containing sequence of F1 antigen subunit from Yersinia pestis. Russ. J. Bioorg. Chem. 2001, 27, p. 241-247.
Go to original source...
- PORAT, A., CHO, S.-H., BECKWITH, J. The unusual transmembrane electron transporter DsbD and its homologues: a bacterial family of disulfide reductases. Res. Microbiol. 2004, 155, p. 617 622.
Go to original source...
Go to PubMed...
- PRATT, R.F. Substrate specifity of bacterial DD-peptidases (penicillin-binding) proteins. Cell. Mol. Life Sci. 2008, 65, p. 2138-2155.
Go to original source...
Go to PubMed...
- QIN, A. et al. Identification of an essential Francisella tularensis subsp. tularensis virulence factor. Infect. Immun. 2009, 77, p. 152-161.
Go to original source...
Go to PubMed...
- QIN, A., MANN, B.J. Identification of transposon insertion mutants of Francisella tularensis tularensis strain Schu S4 deficient in intracellular replication in the hepatic cell line HepG2. BMC Microbiol. 2006, 6, p. 1-12.
Go to original source...
Go to PubMed...
- QIN, A., SCOTT, D.V., MANN, B.J. Francisella tularensis subsp. tularensis ShuS4 disulfide bond formation Protein B, but not an RND-type efflux pump, is required for virulence. Infect. Immun. 2008, 76, p. 3086-3092.
Go to original source...
Go to PubMed...
- QUAN, S. et al. The CXXC motif is more than a redox rheostat. J. Biol. Chem. 2007, 282, p. 28823 28833.
Go to original source...
Go to PubMed...
- REID, E., COLE, J., EAVES. D.J. The Escherichia coli CcmG protein fulfils a specific role in cytochrome c assembly. Biochem. J. 2001, 355, p. 51-58.
Go to original source...
Go to PubMed...
- RIETSCH, A. et al. Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J. Bacteriol. 1997, 179, p. 6602-6608.
Go to original source...
Go to PubMed...
- ROZHKOVA, A. et al. Structural basis and kinetics of inter- and intramolecular disulfide exchange in the redox catalyst DsbD. EMBO J. 2004, 23, p. 1709 1719.
Go to original source...
Go to PubMed...
- RUIZ, N. et al. Nonconsecutive disulfide bond formation in an essential integral outer membrane protein. PNAS. 2010, 107, p. 12245-12250.
Go to original source...
Go to PubMed...
- SINHA, S. et al. Reduced DNA binding and uptake in the absence of DsbA1 and DsbA2 of Neisseria meningitidis due to inefficient folding of the outer-membrane secretin PilQ. Microbiology. 2008, 154, p. 217-225.
Go to original source...
Go to PubMed...
- SINHA, S., LANGFORD, P.L., KROLL, J.S. Functional diversity of three different DsbA proteins from Neisseria meningitidis. Microbiology. 2004, 150, p. 2993-3000.
Go to original source...
Go to PubMed...
- STEWARD, E.J., KATZEN, F., BECKWITH, J. Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. EMBO J. 1999, 18, p. 5963-5971.
Go to original source...
Go to PubMed...
- STRASKOVA, A. et al. Proteome analysis of an attenuated Francisella tularensis dsbA mutant: Identification of potential DsbA substrate proteins. J. Proteome. Res. 2009, 8, p. 5336 5346.
Go to original source...
Go to PubMed...
- SUN, X.X., WANG, C.C. The N-terminal sequence (residues 1-65) is essential for dimerization, activities, and peptide binding of Escherichia coli DsbC. J. Biol. Chem. 2000, 275, p. 22743-22749.
Go to original source...
Go to PubMed...
- TAKEDA, K., SHIZUO, A. Toll-like receptors in innate immunity. Int. Immunol. 2005, 17, p. 1-14.
Go to original source...
Go to PubMed...
- TÄRNVIK, A., BERGLUND, L. Tularaemia. Eur. Respir. J. 2003, 21, p. 361-367.
Go to original source...
Go to PubMed...
- TEMPEL, R. et al. Attenuated Francisella novicida transposon mutants protect mice against wild-type challenge. Infekt. Immun. 2006, 74, p. 5095-5105.
Go to original source...
Go to PubMed...
- TETTELIN, H. et al. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science. 2000, 287, p. 1809 1815.
Go to original source...
Go to PubMed...
- TEYSSOU, R., MUROS-LE ROUZIC, E. Meningitis epidemics in Africa: a brief overview. Vaccine. 2007, 25, p. A3-A7.
Go to original source...
Go to PubMed...
- THAKRAN, S. et al. Identification of Francisella tularensis lipoproteins that stimulate the Toll-like receptor (TLR) 2/TLR1 heterodimer. J. Biol. Chem. 2008, 283, p. 3751-3760.
Go to original source...
Go to PubMed...
- THANASSI, D.G., SAULINO, E.T., HULTGREN, S.J. The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr. Opin. Microbiol. 1998, 1, p. 223-231.
Go to original source...
Go to PubMed...
- THONY-MEYER, L. Biogenesis of respiratory cytochromes in bacteria. Microbiol. Mol. Biol. Rev. 1997, 61, p. 337-376.
Go to original source...
Go to PubMed...
- TINSLEY, C.R. et al. Three homologues, including two membrane-bound proteins, of the disulfide oxidoreductase DsbA in Neisseria meningitidis. J. Biol. Chem. 2004, 279, p. 27078-27087.
Go to original source...
Go to PubMed...
- TSAI, Y.L. et al. Disruption of Plasmodium falciparum chitinase markedly impairs parasite invasion of mosquito midgut. Infect. Immun. 2001, 69, p. 4048-4054.
Go to original source...
Go to PubMed...
- VIVIAN, J.P. et al. Structure and function of the oxidoreductase DsbA1 from Neisseria meningitidis. J. Mol. Biol. 2009, 394, p. 931-943.
Go to original source...
Go to PubMed...
- WUNDERLICH, M., GLOCKSHUBER, R. Redox properties of protein disulfide isomerase (DsbA) from Escherichia coli. Protein. Sci. 1993, 2, p. 717-726.
Go to original source...
Go to PubMed...
- YU, J., KROLL, J.S. DsbA: a protein-folding catalyst contributing to bacterial virulence. Microbes. Infect. 1999, 1, p. 1221-1228.
Go to original source...
Go to PubMed...
- ZAPUN, A., BARDWELL, J.C.A., CREIGHTON, T.E. The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Bochemistry. 1993, 32, p. 5083-5092.
Go to original source...
Go to PubMed...
- ZAV'YALOV, V.P. et al. Influence of the conserved disulphide bond, exposed to the putative binding pocket, on the structure and function of the immunoglobulin-like molecular chaperone Caf1M of Yersinia pestis. Biochem. J. 1997, 324, p. 571-578.
Go to PubMed...
- ZHOU, D., YANG, R. Molecular Darwinian evolution of virulence in Yersinia pestis. Infekt. Immun. 2009, 77, p. 2242-2250.
Go to original source...
Go to PubMed...