MMSL 2017, 86(4):145-157 | DOI: 10.31482/mmsl.2017.026
THE CENTRAL ROLE OF GLUCOSE IN METABOLISM AND NUTRITION OF CRITICALLY ILL PATIENTSReview article
- 1 Katedra vojenského vnitřního lékařství a vojenské hygieny, Fakulta vojenského zdravotnictví, Univerzita obrany, Hradec Králové, Česká republika
- 2 III. interní gerontometabolická klinika, Fakultní nemocnice Hradec Králové, Česká republika
- 3 IV. interní hematologická klinika, Fakultní nemocnice Hradec Králové, Česká republika
K vykonávání fyziologických funkcí a udržování buněk při životě vyžaduje lidský organismus pravidelný přísun základních živin v podobě sacharidů, lipidů a proteinů. Tyto makronutrienty poskytují nejen energii pro metabolické děje, ale zároveň plní roli jako důležité strukturní nebo signální molekuly. Glukóza je nejvýznamnějším sacharidem v živočišné říši, téměř všechny sacharidy v potravě se postprandiálně přeměňují na glukózu, která hraje nezastupitelnou roli pro další (nejen intermediární) metabolismus. Metabolismus člověka se specificky liší ve zdraví a nemoci, zásadní změny nastávají u kriticky nemocných pacientů (1). Autonomní nervový systém spolu se zvýšenou produkcí hormonů mají na udržování adekvátního glukózového metabolismu v průběhu kritického stavu zásadní vliv (2). Nutriční podpora představuje součást komplexní péče o kriticky nemocné. Přestože je glukóza historicky nejdéle a v současné době v parenterální výživě i jediným používaným sacharidem v nutriční podpoře, do současné doby není odborná veřejnost sjednocena v otázce stresové hyperglykémie, významu inzulinové rezistence, adekvátní dávky glukózy či jejich nežádoucích a pozitivních účincích. Tento přehledový článek pojednává s klinickým přesahem o vzájemně kontroverzních výzkumech na poli metabolismu glukózy u kriticky nemocných pacientů v posledních desetiletích, ale současně není systematickým přehledem literatury.
Keywords: glukóza; insulinová rezistence; kriticky nemocný pacient; nutriční podpora
To carry out the physiological functions and maintaining human life requires the regular supply of essential nutrients in the form of carbohydrates, lipids and proteins. These macronutrients not only provide energy for metabolic role, but also act as an important structural or signal molecules. Glucose is the main carbohydrate in mammals, almost all dietary carbohydrates are converted to glucose, which is essential, not only for the intermediate metabolism. Specific changes in metabolism occur in critical ill patient. Autonomic nervous system together with hormone production play essential role in maintaining adequate glucose metabolism in the critical illnes. Nutritional support is an important part of a comprehensive care for critically ill. Although glucose is historically and currently the only carbohydrated used in parenteral nutrition and nutritional aid, the answers to the questions of the experts about stress hyperglycaemia, importance of insulin resistance, adequate of glucose dose or their adverse effects still remain unclear. The present paper raises clinically relevant questions focused on the metabolism of glucose of the critically ill patient, but is not intended to be a systematic review of the literature.
Keywords: metabolism; glucose; insulin resitance; critical ill patient; nutrition support
Received: November 6, 2017; Revised: November 27, 2017; Published: December 8, 2017 Show citation
References
- Engel F L. The significance of the metabolic changes during shock. Ann. N. Y. Acad. Sci. 1952;55:381-393.
Go to original source...
Go to PubMed...
- Dungan K M, Braithwaite S S & Preiser J C. Stress hyperglycaemia. Lancet. 2009;373:1798-1807.
Go to original source...
Go to PubMed...
- Chen L, Tuo B & Dong H. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters. Nutrients 8; 2016.
Go to original source...
Go to PubMed...
- Adeva-Andany M M, Pérez-Felpete N, Fernández-Fernández C, Donapetry-García C & Pazos-García C. Liver glucose metabolism in humans. Biosci. Rep. 36; 2016.
Go to original source...
Go to PubMed...
- Thorens B & Mueckler M. Glucose transporters in the 21st Century. Am. J. Physiol. - Endocrinol. Metab. 2010;298:E141-E145.
Go to original source...
Go to PubMed...
- Wilson J E. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J. Exp. Biol. 2003;206:2049-2057.
Go to original source...
Go to PubMed...
- Suhara T et al. Inhibition of the oxygen sensor PHD2 in the liver improves survival in lactic acidosis by activating the Cori cycle. Proc. Natl. Acad. Sci. U. S. A. 2015;112:11642-11647.
Go to original source...
Go to PubMed...
- Russell R W & Young J W. A review of metabolism of labeled glucoses for use in measuring glucose recycling. J. Dairy Sci. 1990;73:1005-1016.
Go to original source...
Go to PubMed...
- Coelho M et al. Effect of Global ATGL Knockout on Murine Fasting Glucose Kinetics. J. Diabetes Res. 2015; 542029.
Go to original source...
Go to PubMed...
- Sun W. et al. MicroRNA-210 Modulates the Cellular Energy Metabolism Shift During H2O2-Induced Oxidative Stress by Repressing ISCU in H9c2 Cardiomyocytes. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2017;43:383-394.
Go to original source...
Go to PubMed...
- Pandey K B & Rizvi S I. Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxid. Med. Cell. Longev. 2010;3:2-12.
Go to original source...
Go to PubMed...
- Wamelink M M C, Struys E A & Jakobs C. The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review. J. Inherit. Metab. Dis. 2008;31:703-717.
Go to original source...
Go to PubMed...
- Grant C M. Metabolic reconfiguration is a regulated response to oxidative stress. J. Biol. 2008;7:1.
Go to original source...
Go to PubMed...
- Gabius H-J. The sugar code: Why glycans are so important. Biosystems. 2017. doi:10.1016/j.biosystems.2017.07.003
Go to original source...
Go to PubMed...
- Soeters M R & Soeters P B. The evolutionary benefit of insulin resistance. Clin. Nutr. Edinb. Scotl. 2012;31:1002-1007.
Go to original source...
Go to PubMed...
- Owen O E et al. Brain metabolism during fasting. J. Clin. Invest. 1967;46:1589-1595.
Go to original source...
Go to PubMed...
- McDevitt R M et al. De novo lipogenesis during controlled overfeeding with sucrose or glucose in lean and obese women. Am. J. Clin. Nutr. 2001;74:737-746.
Go to original source...
Go to PubMed...
- Woerle, H J et al. Pathways for glucose disposal after meal ingestion in humans. Am. J. Physiol. Endocrinol. Metab. 2003;284:E716-725.
Go to original source...
Go to PubMed...
- Richter E A & Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 2013;93:993-1017.
Go to original source...
Go to PubMed...
- Kraniou G N, Cameron-Smith D & Hargreaves M. Acute exercise and GLUT4 expression in human skeletal muscle: influence of exercise intensity. J. Appl. Physiol. Bethesda Md 1985. 2006;101:934-937.
Go to original source...
Go to PubMed...
- Ho K Y et al. Fasting enhances growth hormone secretion and amplifies the complex rhythms of growth hormone secretion in man. J. Clin. Invest. 1988;81:968-975.
Go to original source...
Go to PubMed...
- Hojlund K et al. Reference intervals for glucose, beta-cell polypeptides, and counterregulatory factors during prolonged fasting. Am. J. Physiol. Endocrinol. Metab. 2001;280:E50-58.
Go to original source...
Go to PubMed...
- Faggioni R, Moser A, Feingold K R & Grunfeld C. Reduced Leptin Levels in Starvation Increase Susceptibility to Endotoxic Shock. Am. J. Pathol. 2000;156:1781-1787.
Go to original source...
Go to PubMed...
- Chan J L, Heist K, DePaoli A M, Veldhuis J D & Mantzoros C S. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J. Clin. Invest. 2003;111:1409-1421.
Go to original source...
Go to PubMed...
- Gavrila A et al. Serum adiponectin levels are inversely associated with overall and central fat distribution but are not directly regulated by acute fasting or leptin administration in humans: cross-sectional and interventional studies. J. Clin. Endocrinol. Metab. 2003;88:4823-4831.
Go to original source...
Go to PubMed...
- Chan J L et al. Leptin does not mediate short-term fasting-induced changes in growth hormone pulsatility but increases IGF-I in leptin deficiency states. J. Clin. Endocrinol. Metab. 2008;93:2819-2827.
Go to original source...
Go to PubMed...
- Cahill G F. Fuel metabolism in starvation. Annu. Rev. Nutr. 2006;26:1-22.
Go to original source...
Go to PubMed...
- Elia M, Zed C, Neale G & Livesey G. The energy cost of triglyceride-fatty acid recycling in nonobese subjects after an overnight fast and four days of starvation. Metab. - Clin. Exp. 1987;36:251-255.
Go to original source...
Go to PubMed...
- Owen O E, Smalley K J, D'Alessio D A, Mozzoli M A & Dawson E K. Protein, fat, and carbohydrate requirements during starvation: anaplerosis and cataplerosis. Am. J. Clin. Nutr. 1998;68:12-34.
Go to original source...
Go to PubMed...
- van der Crabben S N et al. Prolonged fasting induces peripheral insulin resistance, which is not ameliorated by high-dose salicylate. J. Clin. Endocrinol. Metab. 2008;93:638-641.
Go to original source...
Go to PubMed...
- Maughan R J & Gleeson M. Influence of a 36 h fast followed by refeeding with glucose, glycerol or placebo on metabolism and performance during prolonged exercise in man. Eur. J. Appl. Physiol. 1988;57:570-576.
Go to original source...
Go to PubMed...
- Wolfe R R, Allsop J R & Burke J F. Glucose metabolism in man: responses to intravenous glucose infusion. Metabolism. 1979;28:210-220.
Go to original source...
Go to PubMed...
- Soeters M R et al. Muscle adaptation to short-term fasting in healthy lean humans. J. Clin. Endocrinol. Metab. 2008;93:2900-2903.
Go to original source...
Go to PubMed...
- Cherrington A D, Diamond M P, Green D R & Williams P E. Evidence for an intrahepatic contribution to the waning effect of glucagon on glucose production in the conscious dog. Diabetes 1982;31:917-922.
Go to original source...
Go to PubMed...
- Menuelle P & Plas C. Variations in the antagonistic effects of insulin and glucagon on glycogen metabolism in cultured foetal hepatocytes. Biochem. J. 1991;277:111-117.
Go to original source...
Go to PubMed...
- Féry F. Role of hepatic glucose production and glucose uptake in the pathogenesis of fasting hyperglycemia in type 2 diabetes: normalization of glucose kinetics by short-term fasting. J. Clin. Endocrinol. Metab. 1994;78:536-542.
Go to original source...
Go to PubMed...
- Landau B R et al. Contributions of gluconeogenesis to glucose production in the fasted state. J. Clin. Invest. 1996;98:378-385.
Go to original source...
Go to PubMed...
- Chandramouli V et al. Quantifying gluconeogenesis during fasting. Am. J. Physiol. 1997;273:E1209-1215.
Go to original source...
Go to PubMed...
- Gerich J E, Meyer C, Woerle H J & Stumvoll M. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 2001;24:382-391.
Go to original source...
Go to PubMed...
- Petersen M C, Vatner D F & Shulman G I. Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 2017. doi:10.1038/nrendo.2017.80
Go to original source...
Go to PubMed...
- Felig P, Cherif A, Minagawa A & Wahren J. Hypoglycemia during prolonged exercise in normal men. N. Engl. J. Med. 1982;306:895-900.
Go to original source...
Go to PubMed...
- Soeters M R & Soeters P B. The evolutionary benefit of insulin resistance. Clin. Nutr. Edinb. Scotl. 2012;31:1002-1007.
Go to original source...
Go to PubMed...
- Bellomo R & Egi M. What Is a NICE-SUGAR for Patients in the Intensive Care Unit? Mayo Clin. Proc. 2009;84:400-402.
Go to original source...
Go to PubMed...
- Boero F. From Darwin's Origin of Species toward a theory of natural history. 2015. F1000Prime Rep. 7.
Go to original source...
Go to PubMed...
- Dietl G P. The great opportunity to view stasis with an ecological lens. Palaeontology. 2013.;56:1239-1245.
Go to original source...
- Horáčková L, Strouhal E & Vargová L. Základy paleopatologie. Akademické nakladatelství CERM, Masarykova univerzita v Brně; 2004.
- Selye H & Fortier C. Adaptive reactions to stress. Res. Publ. - Assoc. Res. Nerv. Ment. Dis. 1949;29:3-18.
Go to PubMed...
- Fink G. In retrospect: Eighty years of stress. Nature. 2016;539:175-176.
Go to original source...
Go to PubMed...
- Chernow B, Rainey T G & Lake C R. Endogenous and exogenous catecholamines in critical care medicine. Crit. Care Med. 1982;10:409-416.
Go to original source...
Go to PubMed...
- Marik P E. Critical illness-related corticosteroid insufficiency. 2009;Chest 135:181-193.
Go to original source...
Go to PubMed...
- Marik P E & Levitov A. The 'koala stress syndrome' and adrenal responsiveness in the critically ill. Intensive Care Med. 2010;36:1805-1806.
Go to original source...
Go to PubMed...
- Jernås M et al. Changes in adipose tissue gene expression and plasma levels of adipokines and acute-phase proteins in patients with critical illness. Metabolism. 2009;58:102-108.
Go to original source...
Go to PubMed...
- Hill N E et al. Impact of ghrelin on body composition and muscle function in a long-term rodent model of critical illness. PLoS ONE 12; 2017.
Go to original source...
- Nakae J, Oki M & Cao Y. The FoxO transcription factors and metabolic regulation. FEBS Lett. 2008;582:54-67.
Go to original source...
Go to PubMed...
- FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. - PubMed - NCBI. (Accessed: 12th September 2017) Available from: https://www.ncbi.nlm.nih.gov/pubmed/15137936.
- Nesseler N et al. Clinical review: The liver in sepsis. Crit. Care. 2012;16:235.
Go to original source...
Go to PubMed...
- Casteleijn E et al. Endotoxin stimulates glycogenolysis in the liver by means of intercellular communication. J. Biol. Chem. 1988;263:6953-6955.
- Carré J E et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am. J. Respir. Crit. Care Med. 2010;182:745-751.
Go to original source...
Go to PubMed...
- Vanhorebeek I et al. Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet Lond. Engl. 2005;365:53-59.
Go to original source...
Go to PubMed...
- Wilmore D W. Hormonal responses and their effect on metabolism. Surg. Clin. North Am. 1976;56:999-1018.
Go to original source...
Go to PubMed...
- Umpierrez G E et al. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J. Clin. Endocrinol. Metab. 2002;87:978-982.
Go to original source...
Go to PubMed...
- Capes S E, Hunt D, Malmberg K & Gerstein H C. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. The Lancet. 2000;355:773-778.
Go to original source...
Go to PubMed...
- Shaw J H & Wolfe R R. An integrated analysis of glucose, fat, and protein metabolism in severely traumatized patients. Studies in the basal state and the response to total parenteral nutrition. Ann. Surg. 1989;209:63-72.
Go to original source...
Go to PubMed...
- Shaw J H & Wolfe R R. Determinations of glucose turnover and oxidation in normal volunteers and septic patients using stable and radio-isotopes: the response to glucose infusion and total parenteral feeding. Aust. N. Z. J. Surg. 1986;56:785-791.
Go to original source...
Go to PubMed...
- Shaw J H, Wildbore M & Wolfe R R. Whole body protein kinetics in severely septic patients. The response to glucose infusion and total parenteral nutrition. Ann. Surg. 1987;205:288-294.
Go to original source...
Go to PubMed...
- Shaw J H, Klein S & Wolfe R R. Assessment of alanine, urea, and glucose interrelationships in normal subjects and in patients with sepsis with stable isotopic tracers. Surgery. 1985;97:557-568.
Go to PubMed...
- Shizgal H M, Spanier A H & Kurtz R S. Effect of parenteral nutrition on body composition in the critically ill patient. Am. J. Surg. 1976;131:156-161.
Go to original source...
Go to PubMed...
- Long C L, Kinney J M & Geiger J W. Nonsuppressability of gluconeogenesis by glucose in septic patients. Metabolism. 1976;25:193-201.
Go to original source...
Go to PubMed...
- Shaw J H & Wolfe R R. Glucose, fatty acid, and urea kinetics in patients with severe pancreatitis. The response to substrate infusion and total parenteral nutrition. Ann. Surg. 1986;204:665-672.
Go to original source...
Go to PubMed...
- Wolfe R R. Substrate utilization/insulin resistance in sepsis/trauma. Baillières Clin. Endocrinol. Metab. 1997;11:645-657.
Go to original source...
Go to PubMed...
- Long C L. Energy balance and carbohydrate metabolism in infection and sepsis. Am. J. Clin. Nutr. 1977;30:1301-1310.
Go to original source...
Go to PubMed...
- Clowes G H, O'Donnell T F, Blackburn G L & Maki T N. Energy metabolism and proteolysis in traumatized and septic man. Surg. Clin. North Am. 1976;56:1169-1184.
Go to original source...
Go to PubMed...
- Little R A, Henderson A, Frayn K N, Galasko C S & White R H. The disposal of intravenous glucose studied using glucose and insulin clamp techniques in sepsis and trauma in man. Acta Anaesthesiol. Belg. 1987;38:275-279.
Go to PubMed...
- Shaw J H & Wolfe R R. An integrated analysis of glucose, fat, and protein metabolism in severely traumatized patients. Studies in the basal state and the response to total parenteral nutrition. Ann. Surg. 1989;209:63-72.
Go to original source...
Go to PubMed...
- Wolfe R R. Tracers in metabolic research: radioisotope and stable isotope/mass spectrometry methods. Lab. Res. Methods Biol. Med. 1984;9:1-287.
Go to PubMed...
- Brandi L S et al. Insulin resistance of stress: sites and mechanisms. Clin. Sci. Lond. Engl. 1993;85:525-535.
Go to original source...
Go to PubMed...
- Guo Z. Pyruvate dehydrogenase, Randle cycle, and skeletal muscle insulin resistance. Proc. Natl. Acad. Sci. U. S. A. 2015;112:E2854
Go to original source...
Go to PubMed...
- Rahimi Y. et al. Genetic activation of pyruvate dehydrogenase alters oxidative substrate selection to induce skeletal muscle insulin resistance. Proc. Natl. Acad. Sci. 2014;111:16508-16513.
Go to original source...
Go to PubMed...
- Kiebzak G M, Leamy L J, Pierson L M, Nord R H & Zhang Z Y. Measurement precision of body composition variables using the lunar DPX-L densitometer. J. Clin. Densitom. Off. J. Int. Soc. Clin. Densitom. 2000;3,35-41.
Go to original source...
Go to PubMed...
- Wolfe R R. Sepsis as a modulator of adaptation to low and high carbohydrate and low and high fat intakes. Eur. J. Clin. Nutr. 1999;53 Suppl 1,136-142.
Go to original source...
Go to PubMed...
- Jahoor F, Desai M, Herndon D N & Wolfe R R. Dynamics of the protein metabolic response to burn injury. Metabolism. 1988;37:330-337.
Go to original source...
Go to PubMed...
- Williams F N, Branski L K, Jeschke M G & Herndon D N. WHAT, HOW, AND HOW MUCH SHOULD BURN PATIENTS BE FED? Surg. Clin. North Am. 2011;91:609-629.
Go to original source...
Go to PubMed...
- Cherel Y, Robin J P, Heitz A, Calgari C & Le Maho Y. Relationships between lipid availability and protein utilization during prolonged fasting. J. Comp. Physiol. [B] 1992;162:305-313.
Go to original source...
Go to PubMed...
- Tappy L. et al. Effects of isoenergetic glucose-based or lipid-based parenteral nutrition on glucose metabolism, de novo lipogenesis, and respiratory gas exchanges in critically ill patients. Crit. Care Med. 1998;26:860-867.
Go to original source...
Go to PubMed...
- Soeters M R, Soeters P B, Schooneman M G, Houten S M & Romijn J A. Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation. Am. J. Physiol. - Endocrinol. Metab. 2012;303:E1397-E1407.
Go to original source...
Go to PubMed...
- Mazeraud A, Polito A & Annane D. Experimental and clinical evidences for glucose control in intensive care: is infused glucose the key point for study interpretation? Crit. Care Lond. Engl. 2014;18:232.
Go to original source...
Go to PubMed...
- Correspondence: Metabolic reconfiguration precedes transcriptional regulation in the antioxidant response. (PDF Download Available). Accessed: 14th September 2017. ResearchGate Available at: https://www.researchgate.net/publication/41554861_Correspondence_Metabolic_reconfiguration_precedes_transcriptional_regulation_in_the_antioxidant_response.
- Warburg, O. On the origin of cancer cells. Science. 1956;123:309-314.
Go to original source...
Go to PubMed...
- Katic M & Kahn C R. The role of insulin and IGF-1 signaling in longevity. Cell. Mol. Life Sci. 2005;CMLS 62:320-343.
Go to original source...
Go to PubMed...
- Gillis C & Carli F. Promoting Perioperative Metabolic and Nutritional Care. Anesthesiol. J. Am. Soc. Anesthesiol. 2015;123:1455-1472.
Go to original source...
Go to PubMed...
- Soeters M R & Soeters P B. The evolutionary benefit of insulin resistance. Clin. Nutr. 2012;31:1002-1007.
Go to original source...
Go to PubMed...
- Zhang W et al. Dynamic expression of glucose transporters 1 and 3 in the brain of diabetic rats with cerebral ischemia reperfusion. Chin. Med. J. (Engl.) 2009;122:1996-2001.
Go to PubMed...
- Baird T A et al. Persistent poststroke hyperglycemia is independently associated with infarct expansion and worse clinical outcome. Stroke. 2003;34:2208-2214.
Go to original source...
Go to PubMed...
- Salim A et al. Persistent hyperglycemia in severe traumatic brain injury: an independent predictor of outcome. Am. Surg. 2009;75:25-29.
Go to original source...
Go to PubMed...
- Turina M, Fry D E & Polk H C. Acute hyperglycemia and the innate immune system: Clinical, cellular, and molecular aspects: Crit. Care Med. 2005;33:1624-1633.
Go to original source...
Go to PubMed...
- Nishikawa T et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787-790.
Go to original source...
Go to PubMed...
- Marik P E & Bellomo R. Stress hyperglycemia: an essential survival response! Crit. Care. 2013;17:305.
Go to original source...
Go to PubMed...
- Van den Berghe G et al. Intensive Insulin Therapy in Critically Ill Patients. N. Engl. J. Med. 2001;345:1359-1367.
Go to original source...
Go to PubMed...
- Malmberg K et al. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year. J. Am. Coll. Cardiol. 1995;26:57-65.
Go to original source...
Go to PubMed...
- NICE-SUGAR Study Investigators et al. Intensive versus conventional glucose control in critically ill patients. N. Engl. J. Med. 2009;360:1283-1297.
Go to original source...
Go to PubMed...
- Van den Berghe G et al. Intensive Insulin Therapy in the Medical ICU. N. Engl. J. Med. 2006;354:449-461.
Go to original source...
Go to PubMed...
- Hsu C W, Sun S F, Lin S L, Huang H H. & Wong K F. Moderate glucose control results in less negative nitrogen balances in medical intensive care unit patients: a randomized, controlled study. Crit. Care Lond. Engl. 2012;16:R56.
Go to original source...
Go to PubMed...
- Amrein K. et al. Glucose control in intensive care: usability, efficacy and safety of Space GlucoseControl in two medical European intensive care units. BMC Endocr. Disord. 2014;14:62.
Go to original source...
Go to PubMed...
- Wiener R S, Wiener D C & Larson R J. Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. JAMA. 2008;300:933-944.
Go to original source...
Go to PubMed...
- Egi M, Finfer S & Bellomo R. Glycemic control in the ICU. Chest. 2011;140:212-220.
Go to original source...
Go to PubMed...
- Farrokhi F et al. Glucose Variability is an Independent Predictor of Mortality in Hospitalized Patients Treated with Total Parenteral Nutrition. Endocr. Pract. 2013;20:41-45.
Go to original source...
Go to PubMed...
- Krinsley J S. Glycemic variability and mortality in critically ill patients: the impact of diabetes. J. Diabetes Sci. Technol. 2009;3:1292-1301.
Go to original source...
Go to PubMed...
- Mesotten D, Preiser J C & Kosiborod M. Glucose management in critically ill adults and children. Lancet Diabetes Endocrinol. 2015;3:723-733.
Go to original source...
Go to PubMed...
- Chan M C et al. A minimum blood glucose value less than or equal to 120 mg/dL under glycemic control is associated with increased 14-day mortality in nondiabetic intensive care unit patients with sepsis and stress hyperglycemia. J. Crit. Care. 2016;34:69-73.
Go to original source...
Go to PubMed...
- Soeters P et al. Meta-analysis is not enough: The critical role of pathophysiology in determining optimal care in clinical nutrition. Clin. Nutr. 2016;35:748-757.
Go to original source...
Go to PubMed...
- Barazzoni R et al. Carbohydrates and insulin resistance in clinical nutrition: Recommendations from the ESPEN expert group. Clin. Nutr. 2017;36:355-363.
Go to original source...
Go to PubMed...
- McClave S A et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J. Parenter. Enter. Nutr. 2016;40:159-211.
Go to original source...
Go to PubMed...
- Askanazi J et al. Respiratory Changes Induced by the Large Glucose Loads of Total Parenteral-Nutrition. Jama-J. Am. Med. Assoc. 1980;243:1444-1447.
Go to original source...
- Liposky J M & Nelson L D. Ventilatory response to high caloric loads in critically ill patients. Crit. Care Med. 1994;22:796-802.
Go to original source...
Go to PubMed...
- Silberman H & Silberman A W. Parenteral Nutrition, Biochemistry and Respiratory Gas Exchange. J. Parenter. Enter. Nutr. 1986;10:151-154.
Go to original source...
Go to PubMed...
- DeBiasse M A & Wilmore D W. What is optimal nutritional support? New Horiz. Baltim. Md. 1994;2:122-130.
- Pidcoke H F, Wade C E & Wolf S E. Insulin and the burned patient. Crit. Care Med. 2007;35:524-530.
Go to original source...
Go to PubMed...
- Ferrando A A et al. A submaximal dose of insulin promotes net skeletal muscle protein synthesis in patients with severe burns. Ann. Surg. 1999;229:11-18.
Go to original source...
Go to PubMed...
- Jeschke M G, Klein D & Herndon D N. Insulin treatment improves the systemic inflammatory reaction to severe trauma. Ann. Surg. 2004;239:553-560.
Go to original source...
Go to PubMed...
- Bier D M et al. Report of the IDECG Working Group on lower and upper limits of carbohydrate and fat intake. International Dietary Energy Consultative Group. Eur. J. Clin. Nutr. 1999;53 Suppl 1:177-178.
Go to original source...
Go to PubMed...
- Singer P et al. ESPEN Guidelines on Parenteral Nutrition: Intensive care. Clin. Nutr. 2009;28,387-400.
Go to original source...
Go to PubMed...