MMSL 2018, 87(3):119-125 | DOI: 10.31482/mmsl.2018.016

DOSE-RATE AS A CRITICAL ASPECT OF CELLULAR RESPONSE TO GAMMA-RADIATIONReview article

Jiřina Vávrová1, Martina Řezáčová2, Zuzana Šinkorová ORCID...1, Aleš Tichý ORCID...1,3*
1 Department of Radiobiology, Faculty of Military Health Sciences, Hradec Králové, University of Defence, Czech Republic
2 Institute of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Czech Republic
3 Biomedical Research Centre, University Hospital, Hradec Králové, Czech Republic

Ionizing radiation (IR) induces various types of damage in the cellular DNA, of which the most deleterious are double strand breaks. Double strand breaks lead to activation of signaling cascade aiming to repair the damage or to transiently or permanently arrest cell cycle, and/or induce cell death. In the case of high doses of ionizing radiation with a high dose-rate (0.5-1 Gy / min) where the cell repair capacity is insufficient, cell death often occurs in response to double-strand breaks. The response to the radiation exposure depends on many factors such as the cell type, its proliferation activity, and p53 status. In tumor cells, cell death is associated primarily with apoptosis or mitotic catastrophe. In normal fibroblasts, cells accumulate in the G1 phase of the cell cycle and so-called premature senescence occurs after irradiation.In cells with functional p53 protein an increase in the p21 protein (cell division inhibitor) and accumulation of the cells in the G1 phase occurs. In the case of very low-dose rate (LDR), this accumulation is transient; after DNA damage repair, the cells continue to divide. Upon irradiation with higher doses at a LDR, accumulation in the G1 phase is irreversible; p16 protein is upregulated and the status of premature senescence is induced.  The same dose of radiation administered at LDRs results in more senescence than after an acute exposure.In the case of the use of IR for the eradication of tumor cells, the status of these cells is important in terms of p53 and proliferation. About fifty percent of tumor cells do not possess p53 protein or are mutant, and after irradiation they accumulate in the G2 phase and repair the IR-induced damage (e.g. HL-60 cells). In HL-60 cells (p53-/- human promyelocytic leukemia), G2 phase accumulation occurs during irradiation with low dose rate, and their radioresistance increases if the cells are irradiated in the G2-phase. When the dose-rate is very low, the cells enter the mitotic cycle during irradiation, and because cels in mitosis are highly radiosensitive, apoptosis is induced and thus their radiosensitivity increases as well.

Keywords: cell death; apoptosis; senescence; p53; p21; ionizing radiation; dose rate

Received: May 2, 2018; Revised: June 12, 2018; Published: September 7, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Vávrová, J., Řezáčová, M., Šinkorová, Z., & Tichý, A. (2018). DOSE-RATE AS A CRITICAL ASPECT OF CELLULAR RESPONSE TO GAMMA-RADIATION. MMSL87(3), 119-125. doi: 10.31482/mmsl.2018.016
Download citation

References

  1. Press OW, Rasey J. Principles of radioimmunotherapy for hematologists and oncologists. Semin. Oncol. 2000;27: 62-73.
  2. Kersten MJ. Radioimmunotherapy in follicular lymphoma: some like it hot…. Transfus. Apher. Sci. 2011;44(2):173-178. Go to original source... Go to PubMed...
  3. Bakkenist C, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimmer dissociation. Nature. 2003;421:499-506. Go to original source... Go to PubMed...
  4. Bekker-Jensen S, Lukas C, Kitagawa R, Melander F, Kastan MB, Bartek J, Lukas J. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J. Cell Biol. 2006;173:195-206. Go to original source... Go to PubMed...
  5. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C.elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997;90,405-413. Go to original source... Go to PubMed...
  6. Ferraiuolo M, Di Agostino S, Blandino G, Strano S. Oncogenic Intra-p53 Family Member Interactions in Human Cancers. Front. Oncol. 2016; 77, doi: 10.3389/fonc.2016.00077. Go to original source... Go to PubMed...
  7. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 1994;4 (1):1-7. Go to original source... Go to PubMed...
  8. Weinberg RA, The biology of cancer. New York: Garland Science Titles; 2013. Go to original source...
  9. Nicolai S, Rossi A, Di Daniele N, Melino G, Annicchiarico-Petruzzelli M, Raschella G. DNA repair and aging: the impact of the p53 family. Aging (Albany NY) 2015;7(12):1050-1065. Go to original source... Go to PubMed...
  10. Westphal CH1, Hoyes KP, Canman CE, Huang X, Kastan MB, Hendry JH, Leder P. Loss of atm radiosensitizes multiple p53 null tissues. Cancer Res. 1998;58(24):5637-5639.
  11. Busuttil V, Droin N, McCormick L, Bernassola F, Candi E, Melino G, Green DR. NF-kappaB inhibits T-cell activation-induced, p73-dependent cell death by induction of MDM2. Proc. Natl.Acad. Sci. U S A. 2010;107(42):18061-18066. Go to original source... Go to PubMed...
  12. Yoshida K, Ozaki T, Furuya K, Nakanishi M, Kikuchi H, Yamamoto H, Ono S, Koda T, Omura K, Nakagawara A. ATM-dependent nuclear accumulation of IKK-alpha plays an important role in the regulation of p73-mediated apoptosis in response to cisplatin. Oncogene 2008;27(8):1183-1188. Go to original source... Go to PubMed...
  13. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 1995;92:9363-9367. Go to original source... Go to PubMed...
  14. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE. Extension of life-span by induction of telomerase into normal human cells. Science. 1998;279:349-352. Go to original source... Go to PubMed...
  15. Toussaint O,Medrano EE, Zglinicki T. Cellular and molecular mechanisms of stress- induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp. Gerontol. 2000;35:927-945. Go to original source...
  16. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem. Sci. 2000;227:339-344. Go to original source...
  17. Wang Y, Schulte BA, LaRue AC, Ogawa M, Zhou D. Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 2006;107:358-366. Go to original source... Go to PubMed...
  18. Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumour Biol. 2010;31:363-372. Go to original source... Go to PubMed...
  19. Amornwichet N, Oike T, Shibata A, Ogiwara H, Tsuchiya N, Yamauchi M, Saitoh Y, Sekine R, Isono M, Yoshida Y, Ohno T, Kohno T, Nakano T. Carbon-Ion Beam Irradiation Kills X-Ray-Resistant p53-Null Cancer Cells by Inducing Mitotic Catastrophe. PLoS ONE 2014; 9(12): e115121. doi:10. Go to original source... Go to PubMed...
  20. Ning S, Knox SJ. G2/M-phase arrest and death by apoptosis of HL-60 cells irradiated with exponentially decreasing low-dose-rate gamma radiation. Radiat. Res. 1999;151:659-669. Go to original source... Go to PubMed...
  21. Kroger La, Denardo Gl, Gumerlock PH, Xiong CY, Winthrop MD, Shi XB, Mark PC, Leshchinsky T, Denardo SJ. Apoptosis-related gene and protein expression in human lymphoma xenografts (Raji) after LDR radiation using 67Cu-2IT-BAT-Lym-1. Cancer Biothe.r Radiopharm. 2001; 16: 213-225.
  22. Vávrová J, Řezáčová M, Vokurková D, Psutka J. Cell cycle alteration, apoptosis and response of leukemic cell lines to gamma radiation with high- and low-dose-rate. Physiol. Res. 2004;53(3):335-342. Go to original source... Go to PubMed...
  23. Cao L, Kawai H, Sasatani M, Iizuka D, Masuda Y, Inaba T, Suzuki K, Ootsuyama A, Umata T, Kamiya K, Suzuki A. Novel ATM/TP53/p21-mediated checkpoint only activated by chronic ?-irradiation. PLoS One. 2014; 9(8):e104279. Go to original source... Go to PubMed...
  24. Tsai KK, Chuang EY, Little JB, Yuan ZM. Cellular mechanisms for low-dose ionizing radiation-induced perturbation of the breast tissue microenvironment. Cancer Res. 2005;65(15):6734-44. Go to original source... Go to PubMed...
  25. Tsai KK, Stuart J, Chuang YY, Little JB, Yuan ZM. Low-dose radiation-induced senescent stromal fibroblasts render nearby breast cancer cells radioresistant. Radiat Res. 2009;172(3):306-13. Go to original source... Go to PubMed...