MMSL 2020, 89(1):2-13 | DOI: 10.31482/mmsl.2019.018

IN VITRO ANTIMICROBIAL ACTIVITY OF NATURAL SUBSTANCES CONVENIENT FOR USE IN ANIMAL BREEDING INSTEAD OF ANTIBIOTICSOriginal article

Rudolf Kukla1,2*, Jaroslava Mazurova1, Ilona Krovakova1,3, Eva Slehova1, Radek Sleha ORCID...1,4, Miroslav Rozkot5, Lubomir Opletal ORCID...6
1 Department of Biology and Biochemistry, Faculty of Chemical-Technology, University of Pardubice, Czech Republic
2 Department of Clinical Microbiology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
3 Laboratory of Medical Microbiology Inc., Pardubice, Czech Republic
4 Department of Epidemiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
5 Institute of Animal Science Prague Uhrineves, Department of Pig breeding, Czech Republic
6 Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy, Hradec Kralove, Charles University in Prague, Czech Republic

The increasing antibiotic resistance of microbial pathogens isolated from farm animals tissues and the environment has been the one of the most important challenges associated with the use of antibiotics. In order to achieve better production on a farm, animal feed is enriched with antibiotics often originally intended for therapeutic purposes, which may lead to notable increases in microbial resistance. One possible approach to decreasing the excessive use of antibiotics in livestock as well as antimicrobial resistance is utilizing the antimicrobial properties of natural substances.The aim of this study was to evaluate the antimicrobial activity of natural substances including carvacrol, thymol, eugenol, gallic acid, octyl gallate, cnicin and usnic acid against a wide spectrum of microorganisms. Cnicin was the only compound which was isolated from the plant with use of column chromatography. The antimicrobial activities of these natural substances were determined on the basis of their minimum inhibitory, minimum bactericidal and minimum fungicidal concentrations using the microdilution method.This determination of antimicrobial activity revealed thymol and cnicin to be effective natural substances against all tested microorganisms. Octyl gallate had a strong inhibitory and bactericidal effect against gram-positive bacteria and was the most effective against Candida strains. Usnic acid was shown to have the lowest minimum inhibitory concentrations for gram-positive bacteria. These results suggest the possible incorporation of natural substances in animal rearing in order to reduce the high amount of antibiotics which are not used directly to treat animal diseases.

Keywords: Natural substances; antimicrobial activity; bacteria; candida

Received: June 14, 2019; Accepted: July 31, 2019; Prepublished online: September 9, 2019; Published: March 6, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kukla, R., Mazurova, J., Krovakova, I., Slehova, E., Sleha, R., Rozkot, M., & Opletal, L. (2020). IN VITRO ANTIMICROBIAL ACTIVITY OF NATURAL SUBSTANCES CONVENIENT FOR USE IN ANIMAL BREEDING INSTEAD OF ANTIBIOTICS. MMSL89(1), 2-13. doi: 10.31482/mmsl.2019.018
Download citation

References

  1. Alberto MR, Gomez-Cordoves C, Manca de Nadra M. Metabolism of Gallic Acid and Catechin by Lactobacillus hilgardii from Wine. Journal of Agricultural and Food Chemistry. 2004;52(21):6465-6469. Go to original source... Go to PubMed...
  2. Al-Zahrani SHM. Antibacterial activities of gallic acid and gallic acid methyl ester on methicillin-resistant Staphylococcus aureus. Journal of American Science. 2012;8(2):7-12.
  3. Bachelier A, Mayer R, Klein CD. Sesquiterpene lactones are potent and irreversible inhibitors of the antibacterial target enzyme MurA. Bioorganic & Medicinal Chemistry Letters. 2006;16(21):5605-5609. Go to original source... Go to PubMed...
  4. Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils - A review. Food and Chemical Toxicology. 2008;46(2):446-475. Go to original source... Go to PubMed...
  5. Binutu OA, Cordell GA. Gallic Acid Derivatives from Mezoneuron benthamianum Leaves. Pharmaceutical Biology. 2000;38(4):284-286. Go to original source... Go to PubMed...
  6. Birkegård AC, Græsbøll K, Clasen J, Halasa T, Toft N, Folkesson A. Continuing occurrence of vancomycin resistance determinants in Danish pig farms 20 years after removing exposure to avoparcin. Veterinary Microbiology. 2019;232:84-88. Go to original source... Go to PubMed...
  7. Brewer MS. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Comprehensive Reviews in Food Science and Food Safety. 2011;10:221-247. Go to original source...
  8. Bugg TDH, Braddick D, Dowson CG, Roper DI. Bacterial cell wall assembly: still an attractive antibacterial target. Trends in Biotechnology. 2011;29(4):167-173. Go to original source... Go to PubMed...
  9. Chew YL, Mahadi, AM, Wong KM, Goh JK. Anti-methicillin-resistance Staphylococcus aureus (MRSA) compounds from Bauhinia kockiana Korth. And their mechanism of antibacterial activity. BMC Complementary and Alternative Medicine. 2019;18(1):70. Go to original source... Go to PubMed...
  10. Cocchietto M, Skert N, Nimis PL, Sava G. A review on usnic acid, an interesting natural compound. Naturwissenschaften. 2002;89(4):137-146. Go to original source... Go to PubMed...
  11. Cueva C, Mingo S, Munoz-Gonzales I, Bustos I, Requena T, Del Campo R, Martin-Alvarez PJ, Bartolome B, Moreno-Arribas MV. Antibacterial activity of wine phenolic compounds and oenological extracts against potential respiratory pathogens. Letters in Applied Microbiology. 2012;54(6):557-563. Go to original source... Go to PubMed...
  12. Devi KP, Nisha SA, Sakthivel S, Pandian SK. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology. 2010;130(1):107-115. Go to original source... Go to PubMed...
  13. Eslami AC, Pasanphan W, Wagner BA, Buettner GR. Free radicals produced by the oxidation of gallic acid: An electron paramagnetic resonance study. Chemistry Central Journal. 2010;4:1-4. Go to original source... Go to PubMed...
  14. Evans JD, Martin SA. Effects of Thymol on Ruminal Microorganisms. Current Microbiology. 2000;41(5):336-340. Go to original source... Go to PubMed...
  15. Francolini I, Norris P, Piozzi A, Donelli G, Stoodley P. Usnic Acid, a Natural Antimicrobial Agent Able To Inhibit Bacterial Biofilm Formation on Polymer Surfaces. Antimicrobial Agents and Chemotherapy. 2004;48(11):4360-4365. Go to original source... Go to PubMed...
  16. Gaggia F, Mattarelli P, Biavati B. Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology. 2010;141:15-28. Go to original source... Go to PubMed...
  17. García-García R, Lopez-Malo A, Palou E. Bactericidal Action of Binary and Ternary Mixtures of Carvacrol, Thymol, and Eugenol against Listeria innocua. Journal of Food Science. 2011;76(2):95-100. Go to original source... Go to PubMed...
  18. Gill AO, Holley RA. Mechanisms of Bactericidal Action of Cinnamaldehyde against Listeria Monocytogenes and of Eugenol against L. monocytogenes and Lactobacillus sakei. Applied and Enviromental Microbiology. 2004;70(10):5750-5755. Go to original source... Go to PubMed...
  19. Guo N, Liu J, Wu X, Bi X, Meng R, Wang X, Xiang H, Deng X, Yu L. Antifungal activity of thymol against clinical isolates of fluconazole-sensitive and -resistant Candida albicans. Journal of Medical Microbiology. 2009;58(8):1074-1079. Go to original source... Go to PubMed...
  20. Ha TJ, Nihei KI, Kubo I. Lipoxygenase Inhibitory Activity of Octyl Gallate. Journal of Agricultural and Food Chemistry. 2004;52(10):3177-3181. Go to original source... Go to PubMed...
  21. Kalemba D, Kunicka A. Antibacterial and Antifungal Properties of Essential Oils. Current Medicinal Chemistry. 2003;10(10):813-829. Go to original source... Go to PubMed...
  22. Kang MS, OH JS, Kang ICH, Hong SJ, Choi CHH. Inhibitory effect of Methyl Gallate and Gallic Acid on Oral Bacteria. The Journal of Microbiology. 2008;46(6):744-750. Go to original source... Go to PubMed...
  23. Karioti A, Skaltsa H, Lazari D, Sokovic M, Begona G, Harvala C. Secondary Metabolites from Centaurea deusta with Antimicrobial Activity. Zeitschrift für Naturforschung. 2002;57(1-2):75-80. Go to original source... Go to PubMed...
  24. Kirby WMM. (1944): Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science. 1944;99(2579):452-453. Go to original source... Go to PubMed...
  25. Krishna DR, Venkataramana D. Pharmacokinetics of D(+)-usnic acid in rabbits after intravenous and oral administration. Drug Metabolism and Disposition. 1992;20(6):909-911.
  26. Kubo I, Fujita KI, Nihei KI, Nihei A. Antibacterial Activity of Alkyl Gallates against Bacillus subtilis. Journal of Agricultural and Food Chemistry. 2004;52(5):1072-1076. Go to original source... Go to PubMed...
  27. Kubo I, Fujita KI, Nihei KI. Anti-Salmonella Activity of Alkyl Gallates. Journal of Agricultural and Food Chemistry. 2002;50(23):6692-6696. Go to original source... Go to PubMed...
  28. Kubo I, Masuoka N, Ha TJ, Shimizu K, Nihei KI. Multifunctional Antioxidant Activities of Alkyl Gallates. The Open Bioactive Compounds Journal. 2010;3:1-11. Go to original source...
  29. Kubo I, Xiao P, Fujita K. Antifungal Activity of Octyl Gallate: Structural Criteria and Mode of Action. Bioorganic & Chemistry Letters. 2001;11(3):347-350. Go to original source... Go to PubMed...
  30. Kubo I, Xiao P, Fujita K. Antifungal Activity of Octyl Gallate: Structural Criteria and Mode of Action. Bioorganic & Chemistry Letters. 2001;11(3): 347-350. Go to original source... Go to PubMed...
  31. Lauterwein M, Oethinger M, Belsner K, Peters T, Marre R. In Vitro Activities of the Lichen Secondary Metabolites Vulpinic Acid, (+)-Usnic Acid, and (-)-Usnic Acid against Aerobic and Anaerobic Microorganisms. Antimicrobial Agents and Chemotherapy. 1995;39(11):2541-2543. Go to original source... Go to PubMed...
  32. Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedfeld RD, Sul WJ, Stedfeld TM, Chai B, Cole JR, Hashsham SA, Tiedje JM, Stanton TB. In-feed antibiotic effects on the swine intestinal microbiome. PNAS. 2012;109(5):1691-1696. Go to original source... Go to PubMed...
  33. Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. The Journal of Clinical Investigation. 2003;111(9):1265-1273. Go to original source... Go to PubMed...
  34. Mazurova J, Lyskova P, Vydrzalova M, Capkova M, Kroupa T. Bactericidal activity of natural substances on microorganisms contaminating boar semen. Research in Pig Breeding. 2007;1:51-53.
  35. Medina E, Brenes M, Garcia A, Romero C, De Castro A. Bactericidal Activity of Glutaraldehyde-like Compounds from Olive Products. Journal of Food Protection. 2009;72(12):2611-2614. Go to original source... Go to PubMed...
  36. Nguyen DM, Seo DJ, Lee HB, Kim IS, Kim KY, Park RD, Jung WJ. Antifungal activity of gallic acid purified from Terminalia nigrovenulosa bark against Fusarium solani. Microbial pathogenesis. 2013;56:8-15. Go to original source... Go to PubMed...
  37. Nohynek LJ, Alakomi HL, Kahkonen MP, Heinonen M, Helander IM, Oksman-Caldentey KM, Puupponen-Pimia RH. Berry Phenolics: Antimicrobial Properties and Mechanisms of Action Against Severe Human Pathogens. Nutrition and Cancer. 2006;54(1):18-32. Go to original source... Go to PubMed...
  38. Nostro A, Blanco AR, Cannatelli MA, Enea V, Flamini G, Morelli I, Roccaro AS, Alonzo V. Susceptibility of methicillin-resistant staphylococci to oregano essential oil, carvacrol and thymol. Fems Microbiology Letters. 2004;230(2):191-195. Go to original source... Go to PubMed...
  39. Ogata M, Hoshi M, Urano S, Endo T. Antioxidant Activity of Eugenol and Related Monomeric and Dimeric Compounds. Chemical & Pharmaceutical Bulletin. 2000;48(10):1467-1469. Go to original source... Go to PubMed...
  40. Opletal L, Rozkot M, Simerda B. Přírodní látky a strukturované biologické systémy v prevenci a adjuvantní terapii infekčních onemocnění u prasat. Research in Pig Breeding. 2007;1:12-21.
  41. Oussalah M, Caillet S, Saucier L, Lacroix M. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control. 2007;18(5):414-420. Go to original source...
  42. Ow YY, Stupans I. Gallic Acid and Gallic Acid Derivatives: Effects on Drug Metabolizing Enzymes. Current Drug Metabolism. 2003;4(3):241-248. Go to original source... Go to PubMed...
  43. Palaniappan K, Holley RA. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. International Journal of Food Microbiology. 2010;140(2-3):164-168. Go to original source... Go to PubMed...
  44. Pei RS, Zhou F, Ji BP, Xu J. Evaluation of Combined Antibacterial Effects of Eugenol, Cinnamaldehyde, Thymol, and Carvacrol against E. coli with an Improved Method. Journal of Food Science. 2009;74(7)379-383. Go to original source... Go to PubMed...
  45. Qiu J, Feng H, Lu J, Xiang H, Wang D, Dong J, Wang J, Wang X, Liu J, Deng X. Eugenol Reduces the Expression of Virulence-Related Exoproteins in Staphylococcus aureus. Applied and Environmental Microbiology 2010;76(17)5846-5851. Go to original source... Go to PubMed...
  46. Rangel LP, Fritzen M, Yunes RA, Leal PC, Creczynski-Pasa TB, Ferreira-Pereira A. Inhibitory effects of gallic acid ester derivatives on Saccharomyces cerevisiae multidrug resistence protein Pdr5p. Fems Yeast Research. 2010;10(3):244-251. Go to original source... Go to PubMed...
  47. Rankovic B, Misic M, Sukdolak S. The antimicrobial activity of substances derived from the lichens Physcia aipolia, Umbilicaria polyphylla, Parmelia caperata and Hypogymnia physodes. World Journal of Microbiology and Biotechnology. 2008;24(7):1239-1242. Go to original source...
  48. Rozkot M, Frydrychova S, Benesova N, Opletal L. Small molecules of natural origin as a source of antimicrobial agents in pig breeding - review. Research in Pig Breeding. 2013;7:26-33.
  49. Segatore B, Bellio P, Setacci D, Brisdelli F, Piovano M, Garbarino JA, Nicoletti M, Amicosante G, Perilli M, Celenza G. In vitro interaction of usnic acid in combination with antimicrobial agents against methicillin-resistant S. aureus clinical isolates determined by FICI and ΔE model methods. Phytomedicine. 2012;19(3-4):341-347. Go to original source... Go to PubMed...
  50. Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T. Phenolics as potential antioxidant therapeutic agents. Mechanism and actions Mutation Research. 2005;579(1-2):200-213. Go to original source... Go to PubMed...
  51. Steinbach A, Scheidig AJ, Klein CD. The Unusual Binding Mode of Cnicin to the Antibacterial Target Enzyme MurA Revealed by X-ray Crystallography. Journal of Medicinal Chemistry. 2008;51(16):5143-5147. Go to original source... Go to PubMed...
  52. Sundset MA, Kohn A, Mathiesen SD, Præsteng KE. Eubacterium rangiferina, a novel usnic acid-resistant bacterium from the reindeer rumen. Naturwissenschaften. 2008;95(8):741-749. Go to original source... Go to PubMed...
  53. Tay T, Turk OA, Yilmaz M, Turk H, Kivanc M. Evaluation of the Antimicrobial Activity of the Acetone Extract of the Lichen Ramalina farinacea and its (+)-Usnic Acid, Norstictic Acid, and Protocetraric Constituents. Zeitschrift für Naturforschung. 2004;59(5-6):384-388. Go to original source... Go to PubMed...
  54. Tippayatum P, Chonhenchob V. Antibacterial Activities of Thymol, Eugenol, and Nisin Against Some Food Spoilage Bacteria. Kasetsart Journal-Natural Science. 2007;41:319-323.
  55. Uozaki M, Yamasaki H, Katsuyama Y, Higuchi M, Higuti T, Koyama H. Antiviral effect of octyl gallate against DNA and RNA viruses. Antiviral Research. 2007;73(2):85-91. Go to original source... Go to PubMed...
  56. Van Den Bogaard A, Stobberingh E. Epidemiology of resistance to antibiotics. Links between animals and humans. International Journal of Antimicrobial Agents. 2000;14(4):327-335. Go to original source... Go to PubMed...
  57. Wegener HC, Aarestrup FM, Jensen LB, Hammerum AM, Bager F. Use of Antimicrobial Growth Promoters in Food Animals and Enterococcus faecium Resistance to Therapeutic Antimicrobial Drugs in Europe. Emerging Infectious Diseases. 1999;5(3):329-335. Go to original source... Go to PubMed...
  58. Witte W. Selective pressure by antibiotic use in livestock. International Journal of Antimicrobial Agents. 2000;16:19-24. Go to original source... Go to PubMed...
  59. Xu J, Zhou F, Ji BP, Pei RS, Xu N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Letters in Applied Microbiology. 2008;47(3):174-179. Go to original source... Go to PubMed...
  60. Zarrini G, Delgosha ZB, Moghaddam MK, Shahverdi AR. Post-antibacterial effect of thymol. Pharmaceutical Biology. 2010;48(6):633-636. Go to original source... Go to PubMed...
  61. Zhang X, Zhang B, Guo Y, Wang J, Zhao P, Liu J, He K. Colistin resistance prevalence in Escherichia coli from domestic animals in intensive breeding farms of Jiangsu Province. International Journal of Food Microbiology. 2019;16(291):87-90. Go to original source... Go to PubMed...