MMSL 2021, 90(2):54-60 | DOI: 10.31482/mmsl.2021.005

ANTIOXIDANTS IN PATIENTS LIVING WITH HIV ON ANTIRETROVIRALSOriginal article

Katerina Havlickova ORCID...1, Svatava Snopkova ORCID...1, Miroslav Pohanka ORCID...2, Radek Svacinka ORCID...1, Petr Husa j. ORCID...1, Filip Zlamal ORCID...3, Lenka Fabianova ORCID...4, Petr Husa ORCID...1
1 Department of Infectious Diseases, Faculty Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic
2 Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic
3 Research Centre for Toxic Compounds in the Environment, Masaryk University Brno, Czech Republic
4 Department of Infectious Diseases, Masaryk Hospital Ústí nad Labem, Czech Republic

Oxidative stress is considered predictors of diseases associated with aging (cardiovascular disease, neurodegenerative disease, malignancies, and others) in HIV-negative general population. Antioxidants were investigated in people living with HIV on antiretroviral treatment to determine whether they had an immunosenescent phenotype that might predispose to the development of premature age-related diseases. Clinical studies in this population are controversial.

Methods: The study was conducted among 213 subjects with HIV, including 172 subjects on antiretro-virals and 41 subjects before the initiation of treatment. The control group consisted of healthy HIV-negative adults. We compared the reduced glutathione and ferric reducing antioxidant power levels in HIV untreated and treated patients and controls. Significant differences were determined by appropriate statistical tests (t - test, Mann–Whitney U test, Kolmogorov–Smirnov test, ANOVA, Kruskal–Wallis test). Relationships between continuous variables were quantified using Spearman’s rank correlation coefficient.

Results: Glutathione levels were significantly lower in the treated group compared with the untreated group and controls (P ˂ 0.001). Differences in total antioxidant levels between groups were not found.

Conclusions: Significant decrease of antioxidants was found independent of the virologic status of HIV patients on antiretroviral treatment. Persistence of these abnormal parameters may contribute and predispose to the premature development of diseases associated with aging.

Keywords: Antiretroviral therapy; glutathione; HIV; oxidative stress

Received: February 2, 2021; Revised: February 23, 2021; Accepted: February 23, 2021; Prepublished online: February 26, 2021; Published: June 4, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Havlickova, K., Snopkova, S., Pohanka, M., Svacinka, R., j., P.H., Zlamal, F., Fabianova, L., & Husa, P. (2021). ANTIOXIDANTS IN PATIENTS LIVING WITH HIV ON ANTIRETROVIRALS. MMSL90(2), 54-60. doi: 10.31482/mmsl.2021.005
Download citation

References

  1. Masiá M, Padilla S, Fernández M, Barber X, Moreno S, Iribarren JA, et al. Contribution of oxidative stress to non-AIDS Events in HIV-infected patients. J Acquir Immune Defic Syndr. 2017;75(2). https://doi.org/10.1097/QAI.0000000000001287. Go to original source... Go to PubMed...
  2. Giustarini D, Colombo G, Garavaglia ML, Astori E, Portinaro NM, Reggiani F, et al. Assessment of glutathione/glutathione disulphide ratio and S-glutathionylated proteins in human blood, solid tissues, and cultured cells. Free Radic Biol Med. 2017;112:360-375. https://doi.org/10.1016/j.freeradbiomed.2017.08.008. Go to original source... Go to PubMed...
  3. Musisi E, Matovu DK, Bukenya A, Kaswabuli S, Zawedde J, Andama A, et al. Effect of anti-retroviral therapy on oxidative stress in Hospitalized HIV infected adults with and without TB. Afri Health Sci. 2018;18(3):512-522. Go to original source... Go to PubMed...
  4. Sharma B. Oxidative stress in HIV patients receiving antiretroviral therapy. Curr HIV Res. 2014;12(1):13-21. https://doi.org/10.2174 /1570162X12666140402100959. Go to original source... Go to PubMed...
  5. Ivanov AV, Valuev-Elliston VT, Ivanova ON, Kochetkov SN, Starodubova ES, Bartosch B, et al. Oxidative stress during HIV infection: mechanisms and consequences. Oxid Med Cell Longev. 2016; 2016:8910396. http://dx.doi.org/10.1155/2016/8910396 Go to original source... Go to PubMed...
  6. Chen Y, Zhou Z, Min W. Mitochondria, oxidative stress and innate immunity. Front Physiol. 2018; 9:1487. https://doi.org/10.3389/fphys.2018.01487. Go to original source... Go to PubMed...
  7. Ademowo OS, Dias HK, Burton DG, Griffiths HR. Lipid (per) oxidation in mitochondria: an emerging target in the ageing process? Biogerontology. 2017;18(6):859-879. https://doi.org/10.1007/s10522-017-9710-z. Go to original source... Go to PubMed...
  8. Ayala A, Muňoz MF, Arguelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438. https://doi.org/10.1155/2014/360438. Go to original source... Go to PubMed...
  9. Farahani M, Mulinder H, Farahani A, Marlink R. Prevalence and distribution of non-AIDS causes of death among HIV-infected individuals receiving antiretroviral therapy: a systematic review and meta-analysis. Int J STD AIDS. 2017;28 (7):636-650. https://doi.org/10.1177/0956462416632428. Go to original source... Go to PubMed...
  10. Mohanty A, Tiwari-Pandey R, Pandey NR. Mitochondria: the indispensable players in innate immunity and guardians of the inflammatory response. J Cell Commun Signal. 2019;13(3):303-318. https://doi.org/10.1007/s12079-019-00507-9. Go to original source... Go to PubMed...
  11. Gong Y, Rao PSS, Sinha N, Ranjit S, Cory TJ, Kumar S. The role of cytochrome P450 2E1 on ethanol-mediated oxidative stress and HIV replication in human monocyte-derived macrophages. Biochem Biophys Rep. 2019;17:65-70. https://doi.org/10.1016/j.bbrep.2018.11.008. Go to original source... Go to PubMed...
  12. Droge W, Breitkreutz R. Glutathione and immune function. Proc Nutr Soc. 2000;59(4):595-600. https://doi.org/10.1017/S0029665100000847. Go to original source... Go to PubMed...
  13. Flohé L. The fairytale of the GSSG/GSH redox potential. Biochim Biophys Acta. 2013;1830(5):3139-3142. https://doi.org/10.1016/j.bbagen.2012.10.020. Go to original source... Go to PubMed...
  14. Nguyen D, Hsu JW, Jahoor F, Sekhar RV. Effect of increasing glutathione with cysteine and glycine supplementation on mitochondrial fuel oxidation, insulin sensitivity, and body composition in older HIV-infected patients. J Clin Endocrinol Metab. 2014;99(1):169-177. https://doi.org/10.1210/jc.2013-2376. Go to original source... Go to PubMed...
  15. Cribbs SK, Guidot DM, Martin GS, Lennox J, Brown LA. Anti-retroviral therapy is associated with decreased alveolar glutathione levels even in healthy HIV-infected individuals. PloS one. 2014;9(2).e88630. https://doi.org/10.1371/journal.pone.0088630. Go to original source...
  16. Morris D, Ly J, Chi PT, Daliva J, Nguyen T, Soofer C, et al. Glutathione synthesis is compromised in erythrocytes from individuals with HIV. Front Pharmacol 2014;5:73. https://doi.org/10.3389/fphar.2014.00073 Go to original source... Go to PubMed...
  17. Mandas A, Iorio EL, Congiu MG, Balestrieri C, Mereu A, Cau D, et al. Oxidative imbalance in HIV-1 infected patients treated with antiretroviral therapy. J Biomed Biotechnol. 2009;2009:749575. https://doi.org/10.1155/2009/749575. Go to original source... Go to PubMed...
  18. Gil L, Tarinas D, Hernández D, Riverón BV, Pérez D, Tápanes R , et al. Altered oxidative stress indexes related to disease progression marker in human immunodeficiency virus infected patients with antiretroviral therapy. Biomedicine & Aging Pathology. 2011;1(1):8-15. Go to original source...
  19. Awodele O, Olayemi SO, Nwite JA, Adeyemo TA. Investigation of the levels of oxidative stress parameters in HIV and HIV-TB co-infected patients. J Infect Dev Ctries. 2012;6(1):79-85. https://doi.org/10.3855/jidc.1906. Go to original source... Go to PubMed...
  20. Lidzbarsky G, Gutman D, Shekhidem HA, Sharvit L, Atzmon G. Genomic instabilities, cellular senescence, and aging: in vitro, in vivo and aging-like human syndromes. Front Med. 2018;5:104. https://doi.org/10.3389/fmed.2018.00104. Go to original source... Go to PubMed...
  21. Catic A. Cellular metabolism and aging. Prog Mol Biol Transl Sci. 2018;155:85-107. Go to original source... Go to PubMed...
  22. Yang X, Li Y, Li Y, Ren X, Zhang X, Hu D, et al. Oxidative stress-mediated atherosclerosis: mechanisms and therapies. Front Physiol. 2017;8:600. https://doi.org/10.3389/fphys.2017.00600. Go to original source... Go to PubMed...
  23. Singh MV, Kotla S, Le NT, Ko KA, Heo KS, Wang Y, et al. Senescent phenotype induced by p90RSK-NRF2 signaling sensitizes monocytes and macrophages to oxidative stress in HIV+ individuals: implications for atherogenesis. Circulation. 2019;139(9):1199-1216. Go to original source... Go to PubMed...
  24. Marincowitz C, Genis A, Goswami N, De Boever P, Nawrot TS, Strijdom H. Vascular endothelial dysfunction in the wake of HIV and ART. FEBS J. 2019;286(7):1256-1270. https://doi.org/10.1111/febs.14657. Go to original source... Go to PubMed...
  25. Monroy N, Herrero L, Carrasco L, González ME. Influence of glutathione availability on cell damage induced by human immunodeficiency virus type 1 viral protein R. Virus Res. 2016;213:116-123. https://doi.org/10.1016/j.virusres.2015.11.017. Go to original source... Go to PubMed...
  26. Samikkannu T, Ranjith D, Rao KVK, Atluri VSR, Pimentel E, El-Hage N, et al. HIV-1 gp120 and morphine induced oxidative stress: role in cell cycle regulation. Front Microbiol. 2015;6:614. https://doi.org/10.3389/fmicb.2015.00614. Go to original source... Go to PubMed...
  27. Godai K, Takahashi K, Kashiwagi Y, Liu CH, Yi H, Liu S, et al. Ryanodine receptor to mitochondrial reactive oxygen species pathway plays an important role in chronic human immunodeficiency virus gp120MN-induced neuropathic pain in rats. Anesth Analg. 2019;129(1):276-286. https://doi.org/10.1213/ANE.0000000000003916. Go to original source... Go to PubMed...
  28. Nagiah S, Phulukdaree A, Chuturgoon A. Mitochondrial and oxidative stress response inHepG2 cells following acute and prolonged exposure to antiretroviral drugs. J Cell Biochem. 2015;116(9):1939-1946. https://doi.org/10.1002/jcb.25149. Go to original source... Go to PubMed...
  29. Weiß M, Kost B, Renner-Muller I, Wolf E, Mylonas I, Bruning A. Efavirenz causes oxidative stress, endoplasmic reticulum stress, and autophagy in endothelial cells. Cardiovasc Toxicol. 2016;16(1):90-99. doi: 10.1007/s12012-015-9314-2. Go to original source... Go to PubMed...
  30. Anand AR, Rachel G, Parthasarathy D. HIV proteins and endothelial dysfunction: implications in cardiovascular disease. Front Cardiovasc Med. 2018;5:185. https://doi.org/10.3389/fcvm.2018.00185. Go to original source... Go to PubMed...