MMSL 2022, 91(2):140-160 | DOI: 10.31482/mmsl.2022.004

IMPACT OF ANTIDIABETIC DRUGS ON RISK AND OUTCOME OF COVID-19 INFECTION: A REVIEWReview article

Adnan A. Zainal ORCID..., Marwan M. Merkhan ORCID...*
Department of Pharmacology and Toxicology, College of Pharmacy, University of Mosul, Mosul, Iraq

Based on many reports, an unmistakable link probably exists between diabetes mellitus and COVID-19. A major predisposing factor determining severity and mortality of COVID-19 is diabetes mellitus, diabetic patients were shown to be at higher risk for developing severe COVID-19 disease than non-diabetics; many recent studies reported a striking prevalence of DM in those diagnosed with COVID-19. Accordingly, antidiabetic drugs can possibly impact the clinical course and / or the outcome of this infection, either by alleviating diabetes-associated symptoms, minimizing its complications, or by mitigating or aggravating COVID-19 disease by effects independent from their direct antidiabetic effects. Several antidiabetic drug classes were shown to have varying effects, like blocking viral entry to cells, as well as having immunomodulatory, anti-inflammatory, antifibrotic, or cardioprotective effects; such effects could prove beneficial for COVID-19 patients. On the other hand, some antidiabetic agents may have adverse effects that aggravate patients’ condition like hypoglycemia, fluid retention, increased weight or lactic acidosis, which require special consideration in patient management. Some of the drugs were found in observational studies to either reduce mortality from COVID-19 or pose no harm, but more solid evidence from clinical trials is still lacking.

Keywords: COVID-19; diabetes; DPP4 inhibitors; metformin; SGLT2 inhibitors; sulfonylureas; thiazolidinediones

Received: September 23, 2021; Revised: December 23, 2021; Accepted: January 17, 2022; Prepublished online: February 10, 2022; Published: June 3, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zainal, A.A., & Merkhan, M.M. (2022). IMPACT OF ANTIDIABETIC DRUGS ON RISK AND OUTCOME OF COVID-19 INFECTION: A REVIEW. MMSL91(2), 140-160. doi: 10.31482/mmsl.2022.004
Download citation

References

  1. Peng M. Outbreak of COVID-19: An emerging global pandemic threat. Biomed Pharmacother [Internet]. 2020;129:110499. Available from: https://www.sciencedirect.com/science/article/pii/S0753332220306922 Go to original source... Go to PubMed...
  2. Kwok KO, Wei WI, Huang Y, et al. Evolving Epidemiological Characteristics of COVID-19 in Hong Kong From January to August 2020: Retrospective Study. J Med Internet Res [Internet]. 2021;23(4):e26645. Available from: https://www.jmir.org/2021/4/e26645 Go to original source... Go to PubMed...
  3. Yang W, Sun X, Zhang J, et al. The effect of metformin on mortality and severity in COVID-19 patients with diabetes mellitus. Diabetes Res Clin Pract [Internet]. 2021 Aug 1;178. Available from: https://doi.org/10.1016/j.diabres.2021.108977 Go to original source... Go to PubMed...
  4. Drucker DJ. Coronavirus infections and type 2 diabetes-shared pathways with therapeutic implications. Endocr Rev. 2020;41(3):457-70. Go to original source... Go to PubMed...
  5. Dhama K, Khan S, Tiwari R, et al. Coronavirus Disease 2019-COVID-19. Clin Microbiol Rev [Internet]. 2020 Jun 24;33(4):e00028-20. Available from: https://pubmed.ncbi.nlm.nih.gov/32580969 Go to original source... Go to PubMed...
  6. Zhou P, Yang X-L, Wang X-G, et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. BioRxiv. 2020;
  7. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9. Go to original source... Go to PubMed...
  8. Perlman S. Another Decade, Another Coronavirus. N Engl J Med [Internet]. 2020 Jan 24;382(8):760-2. Available from: https://doi.org/10.1056/NEJMe2001126 Go to original source... Go to PubMed...
  9. Zhang H, Penninger JM, Li Y, et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586-90. Go to original source... Go to PubMed...
  10. Lambert DW, Yarski M, Warner FJ, et al. Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem. 2005;280(34):30113-9. Go to original source... Go to PubMed...
  11. Samavati L, Uhal BD. ACE2, Much More Than Just a Receptor for SARS-COV-2. Front Cell Infect Microbiol. 2020;10:317. Go to original source... Go to PubMed...
  12. Batlle D, Wysocki J, Satchell K. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Vol. 134, Clinical science (London, England : 1979). England; 2020. p. 543-5. Go to original source... Go to PubMed...
  13. Kirchdoerfer RN, Cottrell CA, Wang N, et al. Pre-fusion structure of a human coronavirus spike protein. Nature. 2016;531(7592):118-21. Go to original source... Go to PubMed...
  14. Turner AJ, Tipnis SR, Guy JL, et al. ACEH/ACE2 is a novel mammalian metallocarboxypeptidase and a homologue of angiotensin-converting enzyme insensitive to ACE inhibitors. Can J Physiol Pharmacol. 2002;80(4):346-53. Go to original source... Go to PubMed...
  15. Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-4. Go to original source... Go to PubMed...
  16. Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (80- ). 2020;367(6485):1444-8. Go to original source... Go to PubMed...
  17. Heurich A, Hofmann-Winkler H, Gierer S, et al. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 2014;88(2):1293-307. Go to original source... Go to PubMed...
  18. Oarhe CI, Dang V, Dang M, et al. Hyperoxia downregulates angiotensin-converting enzyme-2 in human fetal lung fibroblasts. Pediatr Res. 2015;77(5):656-62. Go to original source... Go to PubMed...
  19. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-80. Go to original source... Go to PubMed...
  20. Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci. 2009;106(14):5871-6. Go to original source... Go to PubMed...
  21. Santos RAS, Sampaio WO, Alzamora AC, et al. Campagnole-Santo MJ The ACE2/Angiotensin-(1-7)/Mas axis of the renin-angiotensin system: Focus on Angiotensin-(1-7) Physiol. Rev. 2018;98:505-53. Go to original source... Go to PubMed...
  22. Bassendine MF, Bridge SH, McCaughan GW, et al. COVID-19 and comorbidities: A role for dipeptidyl peptidase 4 (DPP4) in disease severity? J Diabetes. 2020;12(9):649-58. Go to original source... Go to PubMed...
  23. Hill MA, Mantzoros C, Sowers JR. Commentary: COVID-19 in patients with diabetes. Metabolism. 2020;107:154217. Go to original source... Go to PubMed...
  24. Klonoff DC, Umpierrez GE. Letter to the Editor: COVID-19 in patients with diabetes: Risk factors that increase morbidity. Metabolism. 2020;108:154224. Go to original source... Go to PubMed...
  25. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62. Go to original source... Go to PubMed...
  26. Carey IM, Critchley JA, DeWilde S, et al. Risk of infection in type 1 and type 2 diabetes compared with the general population: a matched cohort study. Diabetes Care. 2018;41(3):513-21. Go to original source... Go to PubMed...
  27. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-43. Go to original source... Go to PubMed...
  28. Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020;109(5):531-8. Go to original source... Go to PubMed...
  29. Borobia AM, Carcas AJ, Arnalich F, et al. A cohort of patients with COVID-19 in a major teaching hospital in Europe. J Clin Med. 2020;9(6):1733. Go to original source... Go to PubMed...
  30. Vaduganathan M, Vardeny O, Michel T, et al. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382(17):1653-9. Go to original source... Go to PubMed...
  31. Remuzzi A, Remuzzi G. COVID-19 and Italy: what next? Lancet. 2020;395(10231):1225-8. Go to original source... Go to PubMed...
  32. Guan W, Liang W, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5). Go to original source...
  33. Fadini GP, Morieri ML, Longato E, et al. Prevalence and impact of diabetes among people infected with SARS-CoV-2. J Endocrinol Invest. 2020;43(6):867-9. Go to original source... Go to PubMed...
  34. Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91-5. Go to original source... Go to PubMed...
  35. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020;34:101623. Go to original source... Go to PubMed...
  36. Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. bmj. 2020;369. Go to original source...
  37. McMichael TM, Currie DW, Clark S, et al. Epidemiology of Covid-19 in a long-term care facility in King County, Washington. N Engl J Med. 2020;382(21):2005-11. Go to original source... Go to PubMed...
  38. Abdelhafiz AH, Emmerton D, Sinclair AJ. Diabetes in COVID-19 pandemic-prevalence, patient characteristics and adverse outcomes. Int J Clin Pract [Internet]. 2021 Jul 1;75(7):e14112. Available from: https://doi.org/10.1111/ijcp.14112 Go to original source... Go to PubMed...
  39. Targher G, Mantovani A, Wang X-B, et al. Patients with diabetes are at higher risk for severe illness from COVID-19. Diabetes Metab. 2020;46(4):335. Go to original source... Go to PubMed...
  40. Mirabelli M, Chiefari E, Puccio L, et al. Potential Benefits and Harms of Novel Antidiabetic Drugs During COVID-19 Crisis. Vol. 17, International Journal of Environmental Research and Public Health . 2020. Go to original source... Go to PubMed...
  41. Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3(3):153-65. Go to original source... Go to PubMed...
  42. Röhrborn D, Wronkowitz N, Eckel J. DPP4 in diabetes. Front Immunol. 2015;6:386. Go to original source... Go to PubMed...
  43. Iacobellis G. COVID-19 and diabetes: Can DPP4 inhibition play a role? Diabetes Res Clin Pract. 2020;162. Go to original source... Go to PubMed...
  44. Valencia I, Peiró C, Lorenzo Ó, et al. DPP4 and ACE2 in Diabetes and COVID-19: Therapeutic Targets for Cardiovascular Complications? [Internet]. Vol. 11, Frontiers in Pharmacology. 2020. p. 1161. Available from: https://www.frontiersin.org/article/10.3389/fphar.2020.01161 Go to original source... Go to PubMed...
  45. Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. Jama. 2007;298(2):194-206. Go to original source... Go to PubMed...
  46. Deacon CF. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front Endocrinol (Lausanne). 2019;10:80. Go to original source... Go to PubMed...
  47. Hanssen NMJ, Jandeleit-Dahm KAM. Dipeptidyl peptidase-4 inhibitors and cardiovascular and renal disease in type 2 diabetes: What have we learned from the CARMELINA trial? Diabetes Vasc Dis Res [Internet]. 2019 Apr 24;16(4):303-9. Available from: https://doi.org/10.1177/1479164119842339 Go to original source... Go to PubMed...
  48. Li Y, Zhang Z, Yang L, et al. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. Iscience. 2020;23(6):101160. Go to original source... Go to PubMed...
  49. Vankadari N, Wilce JA. Emerging COVID-19 coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020;9(1):601-4. Go to original source...
  50. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562-9. Go to original source... Go to PubMed...
  51. Solerte SB, Di Sabatino A, Galli M, et al. Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19. Acta Diabetol. 2020;57:779-83. Go to original source... Go to PubMed...
  52. Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495(7440):251-4. Go to original source... Go to PubMed...
  53. Turner AJ. ACE2 Cell Biology, Regulation, and Physiological Functions. Prot Arm Renin Angiotensin Syst [Internet]. 2015/04/24. 2015;185-9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149539/ Go to original source...
  54. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875-9. Go to original source... Go to PubMed...
  55. Kawase H, Bando YK, Nishimura K, et al. A dipeptidyl peptidase-4 inhibitor ameliorates hypertensive cardiac remodeling via angiotensin-II/sodium-proton pump exchanger-1 axis. J Mol Cell Cardiol. 2016;98:37-47. Go to original source... Go to PubMed...
  56. Aroor A, McKarns S, Nistala R, et al. DPP-4 Inhibitors as Therapeutic Modulators of Immune Cell Function and Associated Cardiovascular and Renal Insulin Resistance in Obesity and Diabetes. Cardiorenal Med [Internet]. 2013;3(1):48-56. Available from: https://www.karger.com/DOI/10.1159/000348756 Go to original source... Go to PubMed...
  57. Lambeir A-M, Durinx C, Scharpé S, et al. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci. 2003;40(3):209-94. Go to original source... Go to PubMed...
  58. Metzemaekers M, Van Damme J, Mortier A, et al. Regulation of chemokine activity-a focus on the role of dipeptidyl peptidase IV/CD26. Front Immunol. 2016;7:483. Go to original source... Go to PubMed...
  59. Pinheiro MM, Stoppa CL, Valduga CJ, et al. Sitagliptin inhibit human lymphocytes proliferation and Th1/Th17 differentiation in vitro. Eur J Pharm Sci. 2017;100:17-24. Go to original source... Go to PubMed...
  60. Kritas SK, Ronconi G, Caraffa AL, et al. Mast cells contribute to coronavirus-induced inflammation: new anti-inflammatory strategy. J Biol Regul Homeost Agents. 2020;34(1):9-14.
  61. Avogaro A, Fadini GP. The pleiotropic cardiovascular effects of dipeptidyl peptidase-4 inhibitors. Br J Clin Pharmacol. 2018;84(8):1686-95. Go to original source... Go to PubMed...
  62. Ayaori M, Iwakami N, Uto-Kondo H, et al. Dipeptidyl peptidase-4 inhibitors attenuate endothelial function as evaluated by flow-mediated vasodilatation in type 2 diabetic patients. J Am Heart Assoc. 2013;2(1):e003277. Go to original source... Go to PubMed...
  63. Widlansky ME, Puppala VK, Suboc TM, et al. Impact of DPP-4 inhibition on acute and chronic endothelial function in humans with type 2 diabetes on background metformin therapy. Vasc Med. 2017;22(3):189-96. Go to original source... Go to PubMed...
  64. Kagal UA, Angadi NB, Matule SM. Effect of dipeptidyl peptidase 4 inhibitors on acute and subacute models of inflammation in male Wistar rats: an experimental study. Int J Appl Basic Med Res. 2017;7(1):26. Go to original source... Go to PubMed...
  65. Birnbaum Y, Bajaj M, Qian J, et al. Dipeptidyl peptidase-4 inhibition by Saxagliptin prevents inflammation and renal injury by targeting the Nlrp3/ASC inflammasome. BMJ Open Diabetes Res Care. 2016;4(1):e000227. Go to original source... Go to PubMed...
  66. Pitocco D, Tartaglione L, Viti L, et al. SARS-CoV-2 and DPP4 inhibition: Is it time to pray for Janus Bifrons? Diabetes Res Clin Pract [Internet]. 2020;163:108162. Available from: https://www.sciencedirect.com/science/article/pii/S0168822720304125 Go to original source... Go to PubMed...
  67. Klemann C, Wagner L, Stephan M, et al. Cut to the chase: a review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system. Clin Exp Immunol. 2016;185(1):1-21. Go to original source... Go to PubMed...
  68. Willemen MJ, Mantel-Teeuwisse AK, Straus SM, et al. Use of dipeptidyl peptidase-4 inhibitors and the reporting of infections: a disproportionality analysis in the World Health Organization VigiBase. Diabetes Care. 2011;34(2):369-74. Go to original source... Go to PubMed...
  69. Dalan R, Ang MLW, Tan WYT, et al. The association of hypertension and diabetes pharmacotherapy with COVID-19 severity and immune signatures: an observational study. Eur Hear Journal-Cardiovascular Pharmacother. 2020; Go to original source...
  70. Yang W, Cai X, Han X, et al. DPP-4 inhibitors and risk of infections: a meta-analysis of randomized controlled trials. Diabetes Metab Res Rev. 2016;32(4):391-404. Go to original source... Go to PubMed...
  71. Gamble J-M, Donnan JR, Chibrikov E, et al. Comparative safety of dipeptidyl peptidase-4 inhibitors versus sulfonylureas and other glucose-lowering therapies for three acute outcomes. Sci Rep. 2018;8(1):1-10. Go to original source... Go to PubMed...
  72. Gooßen K, Gräber S. Longer term safety of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes mellitus: systematic review and meta-analysis. Diabetes, Obes Metab. 2012;14(12):1061-72. Go to original source... Go to PubMed...
  73. Cariou B, Hadjadj S, Wargny M, et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia. 2020;63(8):1500-15. Go to original source... Go to PubMed...
  74. Noh Y, Oh I-S, Jeong HE, et al. Association Between DPP-4 Inhibitors and COVID-19-Related Outcomes Among Patients With Type 2 Diabetes. Diabetes Care [Internet]. 2021 Apr 1;44(4):e64 LP-e66. Available from: http://care.diabetesjournals.org/content/44/4/e64.abstract Go to original source... Go to PubMed...
  75. Solerte SB, D'Addio F, Trevisan R, et al. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and COVID-19: a multicenter, case-control, retrospective, observational study. Diabetes Care. 2020;43(12):2999-3006. Go to original source... Go to PubMed...
  76. Mirani M, Favacchio G, Carrone F, et al. Impact of Comorbidities and Glycemia at Admission and Dipeptidyl Peptidase 4 Inhibitors in Patients With Type 2 Diabetes With COVID-19: A Case Series From an Academic Hospital in Lombardy, Italy. Diabetes Care. 2020 Dec;43(12):3042-9. Go to original source... Go to PubMed...
  77. Strollo R, Maddaloni E, Dauriz M, et al. Use of DPP4 inhibitors in Italy does not correlate with diabetes prevalence among COVID-19 deaths. Diabetes Res Clin Pract. 2021;171:108444. Go to original source... Go to PubMed...
  78. Bornstein SR, Rubino F, Khunti K, et al. Practical recommendations for the management of diabetes in patients with COVID-19. lancet Diabetes Endocrinol. 2020;47(3):193-9. Go to original source... Go to PubMed...
  79. Ceriello A, Standl E, Catrinoiu D, et al. Issues of cardiovascular risk management in people with diabetes in the COVID-19 era. Diabetes Care. 2020;43(7):1427-32. Go to original source... Go to PubMed...
  80. Nauck MA, Meier JJ. Reduced COVID-19 Mortality With Sitagliptin Treatment? Weighing the Dissemination of Potentially Lifesaving Findings Against the Assurance of High Scientific Standards. Diabetes Care [Internet]. 2020 Dec 1;43(12):2906 LP - 2909. Available from: http://care.diabetesjournals.org/content/43/12/2906.abstract Go to original source... Go to PubMed...
  81. Tahara A, Kurosaki E, Yokono M, et al. Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice. Eur J Pharmacol. 2013 Sep;715(1-3):246-55. Go to original source... Go to PubMed...
  82. Yokono M, Takasu T, Hayashizaki Y, et al. SGLT2 selective inhibitor ipragliflozin reduces body fat mass by increasing fatty acid oxidation in high-fat diet-induced obese rats. Eur J Pharmacol. 2014 Mar;727:66-74. Go to original source... Go to PubMed...
  83. Gupta K, Kunal S. SGLT-2 inhibitors as cardioprotective agents in COVID-19. Heart Lung [Internet]. 2020/09/22. 2020;49(6):875-6. Available from: https://pubmed.ncbi.nlm.nih.gov/33010945 Go to original source... Go to PubMed...
  84. Wright EM. Renal Na+-glucose cotransporters. Am J Physiol Physiol. 2001;280(1):F10-8. Go to original source... Go to PubMed...
  85. Lee YJ, Lee YJ, Han HJ. Regulatory mechanisms of Na(+)/glucose cotransporters in renal proximal tubule cells. Kidney Int Suppl. 2007 Aug;(106):S27-35. Go to original source... Go to PubMed...
  86. Hummel CS, Lu C, Loo DDF, et al. Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Am J Physiol Physiol. 2011;300(1):C14-21. Go to original source... Go to PubMed...
  87. Nauck MA. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Devel Ther. 2014;8:1335. Go to original source... Go to PubMed...
  88. Joshi SS, Singh T, Newby DE, et al. Sodium-glucose co-transporter 2 inhibitor therapy: mechanisms of action in heart failure. Heart [Internet]. 2021 Jul 1;107(13):1032 LP - 1038. Available from: http://heart.bmj.com/content/107/13/1032.abstract Go to original source... Go to PubMed...
  89. Dekkers CCJ, Petrykiv S, Laverman GD, et al. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes, Obes Metab. 2018;20(8):1988-93. Go to original source... Go to PubMed...
  90. Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet (London, England). 2019 Jan;393(10166):31-9. Go to original source... Go to PubMed...
  91. Scheen AJ. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet. 2014;53(3):213-25. Go to original source... Go to PubMed...
  92. Kalra S. Sodium glucose co-transporter-2 (SGLT2) inhibitors: a review of their basic and clinical pharmacology. Diabetes Ther. 2014;5(2):355-66. Go to original source... Go to PubMed...
  93. Scheen AJ, Marre M, Thivolet C. Prognostic factors in patients with diabetes hospitalized for COVID-19: Findings from the CORONADO study and other recent reports. Diabetes Metab. 2020 Sep;46(4):265-71. Go to original source... Go to PubMed...
  94. Verma S. Potential Mechanisms of Sodium-Glucose Co-Transporter 2 Inhibitor-Related Cardiovascular Benefits. Am J Cardiol [Internet]. 2019;124:S36-44. Available from: https://www.sciencedirect.com/science/article/pii/S0002914919311786 Go to original source... Go to PubMed...
  95. McMurray JJ V, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995-2008. Go to original source... Go to PubMed...
  96. Kaplan A, Abidi E, El-Yazbi A, et al. Direct cardiovascular impact of SGLT2 inhibitors: mechanisms and effects. Heart Fail Rev. 2018;23(3):419-37. Go to original source... Go to PubMed...
  97. Kalra S. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors and Cardiovascular Disease: A Systematic Review. Cardiol Ther [Internet]. 2016;5(2):161-8. Available from: https://doi.org/10.1007/s40119-016-0069-z Go to original source... Go to PubMed...
  98. Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262-74. Go to original source... Go to PubMed...
  99. Ssentongo P, Ssentongo AE, Heilbrunn ES, et al. Association of cardiovascular disease and 10 other pre-existing comorbidities with COVID-19 mortality: A systematic review and meta-analysis. PLoS One [Internet]. 2020 Aug 26;15(8):e0238215. Available from: https://doi.org/10.1371/journal.pone.0238215 Go to original source... Go to PubMed...
  100. Byrne NJ, Matsumura N, Maayah ZH, Ferdaoussi M, Takahara S, Darwesh AM, et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure. Circ Hear Fail. 2020;13(1):e006277. Go to original source... Go to PubMed...
  101. Maayah ZH, Ferdaoussi M, Takahara S, et al. Empagliflozin suppresses inflammation and protects against acute septic renal injury. Inflammopharmacology. 2021;29(1):269-79. Go to original source... Go to PubMed...
  102. Soni S, Dyck JRB. The Multiple Effects of SGLT2 Inhibitors Suggest Potential Benefit in COVID-19 Patients. Can J Cardiol. 2020;36(10):1691-e3. Go to original source... Go to PubMed...
  103. Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol [Internet]. 2020;17(12):761-72. Available from: https://doi.org/10.1038/s41569-020-0406-8 Go to original source... Go to PubMed...
  104. Kox M, Waalders NJB, Kooistra EJ, et al. Cytokine Levels in Critically Ill Patients With COVID-19 and Other Conditions. JAMA [Internet]. 2020 Oct 20;324(15):1565-7. Available from: https://doi.org/10.1001/jama.2020.17052 Go to original source... Go to PubMed...
  105. Cure E, Cure MC. Can dapagliflozin have a protective effect against COVID-19 infection? A hypothesis. Diabetes Metab Syndr Clin Res Rev. 2020;14(4):405-6. Go to original source... Go to PubMed...
  106. Perico L, Benigni A, Remuzzi G. Should COVID-19 concern nephrologists? Why and to what extent? The emerging impasse of angiotensin blockade. Nephron. 2020;144(5):213-21. Go to original source... Go to PubMed...
  107. Cumhur Cure M, Cure E. Comment: sodium-glucose cotransporters as potential therapeutic targets in patients with type 1 diabetes mellitus: an update on phase 3 clinical trial data. Ann Pharmacother. 2020;54(9):939-40. Go to original source... Go to PubMed...
  108. Cure E, Cure MC. Comment on sodium-glucose co-transporter 2 inhibitors and heart failure. Am J Cardiol. 2020;125(10):1602. Go to original source... Go to PubMed...
  109. Brown E, Rajeev SP, Cuthbertson DJ, et al. A review of the mechanism of action, metabolic profile and haemodynamic effects of sodium-glucose co-transporter-2 inhibitors. Diabetes, Obes Metab. 2019;21:9-18. Go to original source... Go to PubMed...
  110. Kappel BA, Lehrke M, Schütt K, et al. Effect of empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease. Circulation. 2017;136(10):969-72. Go to original source... Go to PubMed...
  111. Scheen AJ. SGLT2 inhibition during the COVID-19 epidemic: Friend or foe? Vol. 46, Diabetes & metabolism. 2020. p. 343-4. Go to original source... Go to PubMed...
  112. Das L, Dutta P. SGLT2 inhibition and COVID-19: The road not taken. Eur J Clin Invest. 2020 Dec;50(12):e13339. Go to original source... Go to PubMed...
  113. Scheen AJ. An update on the safety of SGLT2 inhibitors. Expert Opin Drug Saf. 2019 Apr;18(4):295-311. Go to original source... Go to PubMed...
  114. Li J, Wang X, Chen J, et al. COVID-19 infection may cause ketosis and ketoacidosis. Diabetes Obes Metab. 2020 Oct;22(10):1935-41. Go to original source... Go to PubMed...
  115. Rayman G, Lumb A, Kennon B, et al. Guidance on the management of Diabetic Ketoacidosis in the exceptional circumstances of the COVID-19 pandemic. Vol. 37, Diabetic medicine : a journal of the British Diabetic Association. 2020. p. 1214-6. Go to original source... Go to PubMed...
  116. Armeni E, Aziz U, Qamar S, et al. Protracted ketonaemia in hyperglycaemic emergencies in COVID-19: a retrospective case series. Vol. 8, The lancet. Diabetes & endocrinology. 2020. p. 660-3. Go to original source... Go to PubMed...
  117. Chamorro-Pareja N, Parthasarathy S, Annam J, et al. Letter to the editor: Unexpected high mortality in COVID-19 and diabetic ketoacidosis. Vol. 110, Metabolism: clinical and experimental. 2020. p. 154301. Go to original source... Go to PubMed...
  118. Bossi AC, Forloni F, Colombelli PL. Lack of efficacy of SGLT2-i in severe pneumonia related to novel coronavirus (nCoV) infection: no little help from our friends. Diabetes Ther. 2020;11:1605-6. Go to original source... Go to PubMed...
  119. Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. Jama. 2016;315(8):788-800. Go to original source... Go to PubMed...
  120. Kosiborod M, Berwanger O, Koch GG, et al. Effects of dapagliflozin on prevention of major clinical events and recovery in patients with respiratory failure because of COVID-19: Design and rationale for the DARE-19 study. Diabetes Obes Metab. 2021 Apr;23(4):886-96. Go to original source... Go to PubMed...
  121. Patoulias D, Papadopoulos C, Katsimardou A, et al. Sodium-Glucose Cotransporter 2 Inhibitors and Major COVID-19 Outcomes: Promising Mechanisms, Conflicting Data, and Intriguing Clinical Decisions. Diabetes Ther [Internet]. 2020;11(12):3003-5. Available from: https://doi.org/10.1007/s13300-020-00942-7 Go to original source... Go to PubMed...
  122. Horita S, Nakamura M, Satoh N, et al. Thiazolidinediones and Edema: Recent Advances in the Pathogenesis of Thiazolidinediones-Induced Renal Sodium Retention. Yang T, editor. PPAR Res [Internet]. 2015;2015:646423. Available from: https://doi.org/10.1155/2015/646423 Go to original source... Go to PubMed...
  123. Ahmadian M, Suh JM, Hah N, et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med. 2013;19(5):557-66. Go to original source... Go to PubMed...
  124. Lebovitz HE. Thiazolidinediones: the forgotten diabetes medications. Curr Diab Rep. 2019;19(12):1-13. Go to original source... Go to PubMed...
  125. Soccio RE, Chen ER, Lazar MA. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 2014;20(4):573-91. Go to original source... Go to PubMed...
  126. Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63(3):364-74. Go to original source... Go to PubMed...
  127. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Vol. 8, The Lancet. Respiratory medicine. 2020. p. e21. Go to original source... Go to PubMed...
  128. Jagat J M, Kalyan K G, Subir R. Use of pioglitazone in people with type 2 diabetes mellitus with coronavirus disease 2019 (COVID-19): Boon or bane? Diabetes Metab Syndr Clin Res Rev [Internet]. 2020;14(5):829-31. Available from: https://www.sciencedirect.com/science/article/pii/S1871402120301843 Go to original source... Go to PubMed...
  129. Zhang W, Xu Y-Z, Liu B, et al. Pioglitazone upregulates angiotensin converting enzyme 2 expression in insulin-sensitive tissues in rats with high-fat diet-induced nonalcoholic steatohepatitis. Sci World J. 2014;2014. Go to original source... Go to PubMed...
  130. Fadnavis R. Effect of hyperglycemia and thiazolidinediones on cardiac angiotensin converting enzyme 2 (ACE2) and neprilysin (NEP) in db/db diabetic mice. Wright State University; 2017.
  131. Carboni E, Carta AR, Carboni E. Can pioglitazone be potentially useful therapeutically in treating patients with COVID-19? Med Hypotheses. 2020;140:109776. Go to original source... Go to PubMed...
  132. Esser N, Legrand-Poels S, Piette J, et al. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 2014;105(2):141-50. Go to original source... Go to PubMed...
  133. King GL, Park K, Li Q. Selective insulin resistance and the development of cardiovascular diseases in diabetes: the 2015 Edwin Bierman Award Lecture. Diabetes. 2016;65(6):1462-71. Go to original source... Go to PubMed...
  134. Laakso M, Kuusisto J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat Rev Endocrinol. 2014;10(5):293-302. Go to original source... Go to PubMed...
  135. Ciavarella C, Motta I, Valente S, et al. Pharmacological (or Synthetic) and Nutritional Agonists of PPAR-γ as Candidates for Cytokine Storm Modulation in COVID-19 Disease. Molecules. 2020 Apr;25(9). Go to original source... Go to PubMed...
  136. Pfützner A, Schöndorf T, Hanefeld M, et al. High-sensitivity C-reactive protein predicts cardiovascular risk in diabetic and nondiabetic patients: effects of insulin-sensitizing treatment with pioglitazone. J Diabetes Sci Technol. 2010;4(3):706-16. Go to original source... Go to PubMed...
  137. Xie X, Sinha S, Yi Z, et al. Role of adipocyte mitochondria in inflammation, lipemia and insulin sensitivity in humans: effects of pioglitazone treatment. Int J Obes. 2018;42(2):213-20. Go to original source... Go to PubMed...
  138. Agarwal R. Anti-inflammatory effects of short-term pioglitazone therapy in men with advanced diabetic nephropathy. Am J Physiol Physiol. 2006;290(3):F600-5. Go to original source... Go to PubMed...
  139. Kutsukake M, Matsutani T, Tamura K, et al. Pioglitazone attenuates lung injury by modulating adipose inflammation. J Surg Res. 2014 Jun;189(2):295-303. Go to original source... Go to PubMed...
  140. Barbarin V, Nihoul A, Misson P, et al. The role of pro-and anti-inflammatory responses in silica-induced lung fibrosis. Respir Res. 2005;6(1):1-13. Go to original source... Go to PubMed...
  141. Bassaganya-Riera J, Song R, Roberts PC, et al. PPAR-gamma activation as an anti-inflammatory therapy for respiratory virus infections. Viral Immunol. 2010 Aug;23(4):343-52. Go to original source... Go to PubMed...
  142. Zhang W-Y, Schwartz EA, Permana PA, et al. Pioglitazone inhibits the expression of inflammatory cytokines from both monocytes and lymphocytes in patients with impaired glucose tolerance. Arterioscler Thromb Vasc Biol. 2008;28(12):2312-8. Go to original source... Go to PubMed...
  143. Li AC, Brown KK, Silvestre MJ, et al. Peroxisome proliferator-activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest. 2000;106(4):523-31. Go to original source... Go to PubMed...
  144. Lim S, Lee K-S, Lee JE, et al. Effect of a new PPAR-gamma agonist, lobeglitazone, on neointimal formation after balloon injury in rats and the development of atherosclerosis. Atherosclerosis. 2015;243(1):107-19. Go to original source... Go to PubMed...
  145. Sarafidis PA, Lasaridis AN, Nilsson PM, et al. Ambulatory blood pressure reduction after rosiglitazone treatment in patients with type 2 diabetes and hypertension correlates with insulin sensitivity increase. J Hypertens. 2004;22(9):1769-77. Go to original source... Go to PubMed...
  146. Liu J, Wang L. Peroxisome proliferator-activated receptor gamma agonists for preventing recurrent stroke and other vascular events in patients with stroke or transient ischaemic attack. Cochrane Database Syst Rev. 2015;(10). Go to original source... Go to PubMed...
  147. Zheng Y-Y, Ma Y-T, Zhang J-Y, et al. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259-60. Go to original source... Go to PubMed...
  148. Kernan WN, Viscoli CM, Furie KL, et al. Pioglitazone after ischemic stroke or transient ischemic attack. N engl J med. 2016;374:1321-31. Go to original source... Go to PubMed...
  149. Ronco C, Reis T, Husain-Syed F. Management of acute kidney injury in patients with COVID-19. Lancet Respir Med. 2020;8(7):738-42. Go to original source... Go to PubMed...
  150. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2012;55(6):1577-96. Go to original source... Go to PubMed...
  151. Landstra CP, de Koning EJP. COVID-19 and Diabetes: Understanding the Interrelationship and Risks for a Severe Course [Internet]. Vol. 12, Frontiers in Endocrinology . 2021. p. 599. Available from: https://www.frontiersin.org/article/10.3389/fendo.2021.649525 Go to original source... Go to PubMed...
  152. Panzram G. Mortality and survival in type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1987;30(3):123-31. Go to original source... Go to PubMed...
  153. Pasik C. Diabetes and the biguanides: the mystery of each. Glucophage Serv Diabetol. 1997;40:79.
  154. Kathuria D, Raul AD, Wanjari P, et al. Biguanides: Species with versatile therapeutic applications. Eur J Med Chem [Internet]. 2021;219:113378. Available from: https://www.sciencedirect.com/science/article/pii/S0223523421002270 Go to original source... Go to PubMed...
  155. Bailey CJ. Metformin: historical overview. Diabetologia [Internet]. 2017;60(9):1566-76. Available from: https://doi.org/10.1007/s00125-017-4318-z Go to original source... Go to PubMed...
  156. Werner EA, Bell J. CCXIV.-The preparation of methylguanidine, and of ββ-dimethylguanidine by the interaction of dicyanodiamide, and methylammonium and dimethylammonium chlorides respectively. J Chem Soc Trans. 1922;121:1790-4. Go to original source...
  157. Ungar G, Freedman L, Shapiro SL. Pharmacological Studies of a New Oral Hypoglycemic Drug. Proc Soc Exp Biol Med [Internet]. 1957 May 1;95(1):190-2. Available from: https://journals.sagepub.com/doi/abs/10.3181/00379727-95-23163 Go to original source... Go to PubMed...
  158. Beringer A. Zur Behandlung der Zuckerkrankheit mit Biguaniden. Wien med Wschr. 1958;108:880-2. Go to PubMed...
  159. Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001 Oct;108(8):1167-74. Go to original source... Go to PubMed...
  160. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577-85. Go to original source... Go to PubMed...
  161. Buse JB, Wexler DJ, Tsapas A, et al. 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2020;63(2):221-8. Go to original source... Go to PubMed...
  162. (UKPDS) UKPDS. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854-65. Go to original source...
  163. Gnesin F, Thuesen ACB, Kähler LKA, et al. Metformin monotherapy for adults with type 2 diabetes mellitus. Cochrane database Syst Rev. 2020 Jun;6(6):CD012906. Go to original source... Go to PubMed...
  164. Magro G. SARS-CoV-2 and COVID-19: What are our options? Where should we focus our attention on to find new drugs and strategies? Travel Med Infect Dis. 2020;37:101685. Go to original source... Go to PubMed...
  165. Kim J, You Y. Regulation of organelle function by metformin. IUBMB Life. 2017;69(7):459-69. Go to original source... Go to PubMed...
  166. Zhang C-S, Li M, Ma T, et al. Metformin activates AMPK through the lysosomal pathway. Cell Metab. 2016;24(4):521-2. Go to original source... Go to PubMed...
  167. Glossmann HH, Lutz OMD. Metformin and aging: a review. Gerontology. 2019;65(6):581-90. Go to original source... Go to PubMed...
  168. Liu J, Li X, Lu Q, et al. AMPK: a balancer of the renin-angiotensin system. Biosci Rep [Internet]. 2019 Sep 3;39(9). Available from: https://doi.org/10.1042/BSR20181994 Go to original source... Go to PubMed...
  169. Plattner F, Bibb JA. Chapter 25 - Serine and Threonine Phosphorylation. In: Brady ST, Siegel GJ, Albers RW, Price DLBT-BN (Eighth E, editors. New York: Academic Press; 2012. p. 467-92. Available from: https://www.sciencedirect.com/science/article/pii/B9780123749475000250 Go to original source...
  170. Wang K, Gheblawi M, Oudit GY. Angiotensin Converting Enzyme 2. Circulation [Internet]. 2020 Aug 4;142(5):426-8. Available from: https://doi.org/10.1161/CIRCULATIONAHA.120.047049 Go to original source... Go to PubMed...
  171. Rangarajan S, Bone NB, Zmijewska AA, et al. Metformin reverses established lung fibrosis in a bleomycin model. Nat Med. 2018;24(8):1121-7. Go to original source... Go to PubMed...
  172. Chen J-Y, Qiao K, Liu F, et al. Lung transplantation as therapeutic option in acute respiratory distress syndrome for coronavirus disease 2019-related pulmonary fibrosis. Chin Med J (Engl). 2020;133(12):1390. Go to original source... Go to PubMed...
  173. Ibrahim S, Lowe JR, Bramante CT, et al. Metformin and Covid-19: Focused Review of Mechanisms and Current Literature Suggesting Benefit. Front Endocrinol (Lausanne) [Internet]. 2021 Jul 22;12:587801. Available from: https://pubmed.ncbi.nlm.nih.gov/34367059 Go to original source... Go to PubMed...
  174. Muniyappa R, Gubbi S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am J Physiol Metab. 2020;318(5):E736-41. Go to original source... Go to PubMed...
  175. Ingraham NE, Lotfi-Emran S, Thielen BK, et al. Immunomodulation in COVID-19. Lancet Respir Med. 2020;8(6):544-6. Go to original source... Go to PubMed...
  176. Cameron AR, Morrison VL, Levin D, et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res. 2016;119(5):652-65. Go to original source... Go to PubMed...
  177. Pernicova I, Kelly S, Ajodha S, et al. Metformin to reduce metabolic complications and inflammation in patients on systemic glucocorticoid therapy: a randomised, double-blind, placebo-controlled, proof-of-concept, phase 2 trial. Lancet Diabetes Endocrinol. 2020;8(4):278-91. Go to original source... Go to PubMed...
  178. Papanas TPSPN. COVID-19 and Diabetes Mellitus: May Old Anti-diabetic Agents Become the New Philosopher's Stone? 2020;
  179. Sharma S, Ray A, Sadasivam B. Metformin in COVID-19: A possible role beyond diabetes. Diabetes Res Clin Pract [Internet]. 2020/04/30. 2020 Jun;164:108183. Available from: https://pubmed.ncbi.nlm.nih.gov/32360697 Go to original source... Go to PubMed...
  180. Singh AK, Singh R. Is metformin ahead in the race as a repurposed host-directed therapy for patients with diabetes and COVID-19? diabetes Res Clin Pract. 2020;165:108268. Go to original source... Go to PubMed...
  181. Schuiveling M, Vazirpanah N, Radstake TRDJ, et al. Metformin, a new era for an old drug in the treatment of immune mediated disease? Curr Drug Targets. 2018;19(8):945-59. Go to original source... Go to PubMed...
  182. Ba W, Xu Y, Yin G, Y, et al. Metformin inhibits pro-inflammatory responses via targeting nuclear factor-κB in HaCaT cells. Cell Biochem Funct. 2019;37(1):4-10. Go to original source... Go to PubMed...
  183. Yew WW, Chang KC, Chan DP, et al. Metformin as a host-directed therapeutic in tuberculosis: is there a promise? Tuberculosis. 2019;115:76-80. Go to original source... Go to PubMed...
  184. Martin-Montalvo A, Mercken EM, Mitchell SJ, et al. Metformin improves healthspan and lifespan in mice. Nat Commun 4: 2192. 2013. Go to original source... Go to PubMed...
  185. Diniz Vilela D, Gomes Peixoto L, Teixeira RR, et al. The role of metformin in controlling oxidative stress in muscle of diabetic rats. Oxid Med Cell Longev. 2016;2016. Go to original source... Go to PubMed...
  186. Ouyang J, Isnard S, Lin J, et al. Metformin effect on gut microbiota: insights for HIV-related inflammation. AIDS Res Ther. 2020;17(1):1-9. Go to original source... Go to PubMed...
  187. Lalau J-D, Al-Salameh A, Hadjadj S, et al. Metformin use is associated with a reduced risk of mortality in patients with diabetes hospitalised for COVID-19. Diabetes Metab. 2020 Dec;47(5):101216. Go to original source... Go to PubMed...
  188. Luo P, Qiu L, Liu Y, et al. Metformin Treatment Was Associated with Decreased Mortality in COVID-19 Patients with Diabetes in a Retrospective Analysis. Am J Trop Med Hyg. 2020 Jul;103(1):69-72. Go to original source... Go to PubMed...
  189. Crouse AB, Grimes T, Li P, et al. Metformin Use Is Associated With Reduced Mortality in a Diverse Population With COVID-19 and Diabetes [Internet]. Vol. 11, Frontiers in Endocrinology . 2021. p. 1081. Available from: https://www.frontiersin.org/article/10.3389/fendo.2020.600439 Go to original source... Go to PubMed...
  190. Lazarus G, Suhardi IP, Wiyarta E, et al. Is there a need to reconsider the use of metformin in COVID-19 patients with type 2 diabetes mellitus? Int J Diabetes Dev Ctries. 2021 Mar;1-6. Go to original source... Go to PubMed...
  191. Lukito AA, Pranata R, Henrina J, et al. The Effect of Metformin Consumption on Mortality in Hospitalized COVID-19 patients: a systematic review and meta-analysis. Diabetes Metab Syndr Clin Res Rev. 2020; Go to original source... Go to PubMed...
  192. Lally MA, Tsoukas P, Halladay CW, et al. Metformin is Associated with Decreased 30-Day Mortality Among Nursing Home Residents Infected with SARS-CoV2. J Am Med Dir Assoc. 2021 Jan;22(1):193-8. Go to original source... Go to PubMed...
  193. Ghany R, Palacio A, Dawkins E, et al. Metformin is associated with lower hospitalizations, mortality and severe coronavirus infection among elderly medicare minority patients in 8 states in USA. Diabetes Metab Syndr. 2021;15(2):513-8. Go to original source... Go to PubMed...
  194. Li J, Wei Q, Li WX, et al. Metformin Use in Diabetes Prior to Hospitalization: Effects on Mortality in Covid-19. Endocr Pract Off J Am Coll Endocrinol Am Assoc Clin Endocrinol. 2020 Oct;26(10):1166-72. Go to original source... Go to PubMed...
  195. Kim MK, Jeon JH, Kim SW, et al. The Clinical Characteristics and Outcomes of Patients with Moderate-to-Severe Coronavirus Disease 2019 Infection and Diabetes in Daegu, South Korea. Diabetes Metab J. 2020 Aug;44(4):602-13. Go to original source... Go to PubMed...
  196. Oh TK, Song I-A. Metformin use and risk of COVID-19 among patients with type II diabetes mellitus: an NHIS-COVID-19 database cohort study. Acta Diabetol. 2021 Jun;58(6):771-8. Go to original source... Go to PubMed...
  197. Pérez-Belmonte LM, Torres-Peña JD, López-Carmona MD, et al. Mortality and other adverse outcomes in patients with type 2 diabetes mellitus admitted for COVID-19 in association with glucose-lowering drugs: a nationwide cohort study. BMC Med. 2020 Nov;18(1):359. Go to original source... Go to PubMed...
  198. Chen Y, Yang D, Cheng B, et al. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care. 2020;43(7):1399-407. Go to original source... Go to PubMed...
  199. Zhu L, She Z-G, Cheng X, et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020;31(6):1068-77. Go to original source... Go to PubMed...
  200. Gao Y, Liu T, Zhong W, et al. Risk of Metformin in Patients With Type 2 Diabetes With COVID-19: A Preliminary Retrospective Report. Clin Transl Sci. 2020 Nov;13(6):1055-9. Go to original source... Go to PubMed...
  201. Kow CS, Hasan SS. Metformin use amid coronavirus disease 2019 pandemic. Vol. 92, Journal of medical virology. 2020. p. 2401-2. Go to original source... Go to PubMed...
  202. Ursini F, Ciaffi J, Landini MP, et al. COVID-19 and diabetes: Is metformin a friend or foe? Vol. 164, Diabetes research and clinical practice. 2020. p. 108167. Go to original source... Go to PubMed...
  203. Cure E, Cumhur Cure M. Comment on "Should anti-diabetic medications be reconsidered amid COVID-19 pandemic?". Vol. 164, Diabetes research and clinical practice. 2020. p. 108184. Go to original source... Go to PubMed...
  204. Ugwueze CV, Ezeokpo BC, Nnolim BI, et al. COVID-19 and Diabetes Mellitus: The Link and Clinical Implications. Dubai Diabetes Endocrinol J [Internet]. 2020;26(2):69-77. Available from: https://www.karger.com/DOI/10.1159/000511354 Go to original source...
  205. Cheng X, Liu Y-M, Li H, et al. Metformin Is Associated with Higher Incidence of Acidosis, but Not Mortality, in Individuals with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020 Oct;32(4):537-547.e3. Go to original source... Go to PubMed...
  206. Sinclair A, Dhatariya K, Burr O, et al. Guidelines for the management of diabetes in care homes during the Covid-19 pandemic. Diabet Med [Internet]. 2020/06/15. 2020 Jul;37(7):1090-3. Available from: https://pubmed.ncbi.nlm.nih.gov/32369634 Go to original source... Go to PubMed...
  207. Gupta R, Ghosh A, Singh AK, et al. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes Metab Syndr [Internet]. 2020/03/10. 2020;14(3):211-2. Available from: https://pubmed.ncbi.nlm.nih.gov/32172175 Go to original source... Go to PubMed...
  208. Tahrani AA, Barnett AH, Bailey CJ. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat Rev Endocrinol. 2016;12(10):566-92. Go to original source... Go to PubMed...
  209. Tomar PPS, Arkin IT. SARS-CoV-2 E protein is a potential ion channel that can be inhibited by Gliclazide and Memantine. Biochem Biophys Res Commun. 2020;530(1):10-4. Go to original source... Go to PubMed...
  210. Pasquel FJ, Fayfman M, Umpierrez GE. Debate on insulin vs non-insulin use in the hospital setting-is it time to revise the guidelines for the management of inpatient diabetes? Curr Diab Rep. 2019;19(9):1-11. Go to original source... Go to PubMed...
  211. Gupta R, Hussain A, Misra A. Diabetes and COVID-19: evidence, current status and unanswered research questions. Eur J Clin Nutr [Internet]. 2020;74(6):864-70. Available from: https://doi.org/10.1038/s41430-020-0652-1 Go to original source... Go to PubMed...
  212. Santos A, Magro DO, Evangelista-Poderoso R, et al. Diabetes, obesity, and insulin resistance in COVID-19: molecular interrelationship and therapeutic implications. Diabetol Metab Syndr [Internet]. 2021;13(1):23. Available from: https://doi.org/10.1186/s13098-021-00639-2 Go to original source... Go to PubMed...
  213. Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis. Prog Cardiovasc Dis. 2020;63(3):390. Go to original source... Go to PubMed...
  214. Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr Clin Res Rev. 2020;14(3):247-50. Go to original source... Go to PubMed...
  215. Zeller M, Danchin N, Simon D, et al. Impact of type of preadmission sulfonylureas on mortality and cardiovascular outcomes in diabetic patients with acute myocardial infarction. J Clin Endocrinol Metab. 2010;95(11):4993-5002. Go to original source... Go to PubMed...
  216. Charoenngam N, Alexanian SM, Apovian CM, et al. Association between Hyperglycemia at Hospital Presentation and Hospital Outcomes in COVID-19 Patients with and without Type 2 Diabetes: A Retrospective Cohort Study of Hospitalized Inner-City COVID-19 Patients. Nutrients. 2021 Jun;13(7). Go to original source... Go to PubMed...
  217. Khunti K, Knighton P, Zaccardi F, et al. Prescription of glucose-lowering therapies and risk of COVID-19 mortality in people with type 2 diabetes: a nationwide observational study in England. Lancet Diabetes Endocrinol. 2021;9(5):293-303. Go to original source... Go to PubMed...
  218. Han T, Ma S, Sun C, et al. The Association Between Anti-diabetic Agents and Clinical Outcomes of COVID-19 in Patients with Diabetes: A Systematic Review and Meta-Analysis. Arch Med Res [Internet]. 2021; Available from: https://www.sciencedirect.com/science/article/pii/S0188440921001673 Go to original source...
  219. Apicella M, Campopiano MC, Mantuano M, et al. COVID-19 in people with diabetes: understanding the reasons for worse outcomes. lancet Diabetes Endocrinol. 2020; Go to original source...
  220. Vitiello A, Ferrara F. The impact of COVID-19 in diabetic patient. Arch Med Heal Sci [Internet]. 2020 Jan 1;8(1):167-71. Available from: https://www.amhsjournal.org/article.asp?issn=2321-4848 Go to original source...
  221. Katulanda P, Dissanayake HA, Ranathunga I, et al. Prevention and management of COVID-19 among patients with diabetes: an appraisal of the literature. Diabetologia. 2020;63(8):1440-52. Go to original source... Go to PubMed...
  222. Lim S, Bae JH, Kwon H-S, et al. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol [Internet]. 2021;17(1):11-30. Available from: https://doi.org/10.1038/s41574-020-00435-4. Go to original source... Go to PubMed...