MMSL 2025, 94(2):79-93 | DOI: 10.31482/mmsl.2024.006

BEE VENOM – FRIEND OR ENEMYReview article

Ludovit Pudelka ORCID...1*, Sylva Janovska ORCID...2, Jiri Malis2,3, Radek Sleha ORCID...2, Pavel Bostik ORCID...2,4
1 Department of Emergency Medicine and Military General Medicine, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czech Republic
2 Department of Epidemiology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czech Republic
3 Department of Thoracic Surgery, Thomayer Hospital, Czech Republic
4 Department of Medical Microbiology, University Hospital in Hradec Kralove, Czech Republic

Increasing resistance to antibiotics, adverse effects of standard anti-cancer or anti-inflammatory treatments, or tumour types resistant to these treatments are leading to a search for alternatives. One of these is the use of natural products, such as bee venom, which have the same or better effect than these standard products. Bee venom has been used to treat a number of diseases for thousands of years. However, a significant obstacle remains the risk of severe allergic reactions, which can be caused by some of the more than 100 substances contained in the venom. Therefore, intensive research is currently underway to investigate not only the actual use of bee venom or its components in the above areas, but also ways to prevent these adverse effects.

Keywords: bee; venom; apitherapy; allergic reaction; api m; envenoming

Received: January 26, 2024; Revised: April 3, 2024; Accepted: April 3, 2024; Prepublished online: May 10, 2024; Published: June 2, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Pudelka, L., Janovska, S., Malis, J., Sleha, R., & Bostik, P. (2025). BEE VENOM – FRIEND OR ENEMY. MMSL94(2), 79-93. doi: 10.31482/mmsl.2024.006
Download citation

References

  1. Zhang S, Liu Y, Ye Y, et al. Bee venom therapy: Potential mechanisms and therapeutic applications. Toxicon. 2018;148:64-73. Go to original source... Go to PubMed...
  2. Gupta R, Stangaciu S. Apitherapy: Holistic Healing Through the Honeybee and Bee Products in Countries with Poor Healthcare System. In 2014. p. 413-446. Go to original source...
  3. Carpena M, Nuñez-Estevez B, Soria-Lopez A, et al. Bee Venom: An Updating Review of Its Bioactive Molecules and Its Health Applications. Nutrients. 2020;12(11):3360. Go to original source... Go to PubMed...
  4. Cutakova Z. Dr. Philipp Terè, zakladatel moderní apiterapie. Mod Vèelaø. 2004(1):28.
  5. Van Vaerenbergh M, Debyser G, Devreese B, et al. Exploring the hidden honeybee (Apis mellifera) venom proteome by integrating a combinatorial peptide ligand library approach with FTMS. J Proteomics. 2014;99:169-178. Go to original source... Go to PubMed...
  6. Wehbe R, Frangieh J, Rima M, et al. Bee Venom: Overview of Main Compounds and Bioactivities for Therapeutic Interests. Molecules. 2019;24(16):2997. Go to original source... Go to PubMed...
  7. Abd El-Wahed AA, Khalifa SAM, Sheikh BY, et al. Chapter 13 - Bee Venom Composition: From Chemistry to Biological Activity. In: Atta-ur-Rahman, editor. Studies in Natural Products Chemistry [Internet]. Elsevier; 2019 [cited 2023 Dec 7]. p. 459-484. Available from: https://www.sciencedirect.com/science/article/pii/B9780444641816000139 Go to original source...
  8. Pascoal A, Estevinho MM, Choupina AB, et al. An overview of the bioactive compounds, therapeutic properties and toxic effects of apitoxin. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2019;134:110864. Go to original source... Go to PubMed...
  9. Eze OBL, Nwodo OFC, Ogugua VN. Therapeutic Effect of Honey Bee Venom.
  10. Devi A, Bhalotia S, Kumar NR, et al. Honey BEE Venom and ITS Composition: Focusing on Different Apis Species -A Review. J Basic Appl Eng Res. 2016;3:2350-2377.
  11. Koetz AH. Ecology, Behaviour and Control of Apis cerana with a Focus on Relevance to the Australian Incursion. Insects. 2013;4(4):558-592. Go to original source... Go to PubMed...
  12. Benton AW, Morse RA. Venom Toxicity and Proteins of the Genus Apis. J Apic Res. 1968;7(3):113-118. Go to original source...
  13. Ferreira Junior RS, Sciani JM, Marques-Porto R, et al. Africanized honey bee (Apis mellifera) venom profiling: Seasonal variation of melittin and phospholipase A(2) levels. Toxicon Off J Int Soc Toxinology. 2010;56(3):355-362. Go to original source... Go to PubMed...
  14. Hsiang HK, Elliott WB. Differences in honey bee (Apis mellifera) venom obtained by venom sac extraction and electrical milking. Toxicon Off J Int Soc Toxinology. 1975;13(2):145-148. Go to original source... Go to PubMed...
  15. Pence RJ. Methods for producing and bio-assaying intact honeybee venom for medical use. Am Bee J. 1981(121):726-731.
  16. dos Santos-Pinto JRA, Perez-Riverol A, Lasa AM, et al. Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms. Toxicon. 2018;148:172-196. Go to original source... Go to PubMed...
  17. Santos LD, Santos KS, de Souza BM, et al. Purification, sequencing and structural characterization of the phospholipase A1 from the venom of the social wasp Polybia paulista (Hymenoptera, Vespidae). Toxicon. 2007;50(7):923-937. Go to original source... Go to PubMed...
  18. Ownby CL, Powell JR, Jiang MS, et al. Melittin and phospholipase A2 from bee (Apis mellifera) venom cause necrosis of murine skeletal muscle in vivo. Toxicon Off J Int Soc Toxinology. 1997;35(1):67-80. Go to original source... Go to PubMed...
  19. Hou MH, Chuang CY, Ko TP, et al. Crystal structure of vespid phospholipase A(1) reveals insights into the mechanism for cause of membrane dysfunction. Insect Biochem Mol Biol. 2016;68:79-88. Go to original source... Go to PubMed...
  20. Costa H, Palma MS. Agelotoxin: a phospholipase A2 from the venom of the neotropical social wasp cassununga (Agelaia pallipes pallipes) (Hymenoptera-Vespidae). Toxicon. 2000;38(10):1367-1379. Go to original source... Go to PubMed...
  21. Watala C, Kowalczyk JK. Hemolytic potency and phospholipase activity of some bee and wasp venoms. Comp Biochem Physiol C. 1990;97(1):187-194. Go to original source... Go to PubMed...
  22. Yang H, Xu X, Ma D, et al. A phospholipase A1 platelet activator from the wasp venom of Vespa magnifica (Smith). Toxicon Off J Int Soc Toxinology. 2008;51(2):289-296. Go to original source... Go to PubMed...
  23. Lee G, Bae H. Bee Venom Phospholipase A2: Yesterday's Enemy Becomes Today's Friend. Toxins. 2016;8(2):48. Go to original source... Go to PubMed...
  24. Prado M, Solano-Trejos G, Lomonte B. Acute physiopathological effects of honeybee (Apis mellifera) envenoming by subcutaneous route in a mouse model. Toxicon Off J Int Soc Toxinology. 2010;56(6):1007-1017. Go to original source... Go to PubMed...
  25. Elieh Ali Komi D, Shafaghat F, Zwiener RD. Immunology of Bee Venom. Clin Rev Allergy Immunol. 2018;54(3):386-396. Go to original source... Go to PubMed...
  26. Hossen MdS, Gan S, Khalil M. Melittin, a Potential Natural Toxin of Crude Bee Venom: Probable Future Arsenal in the Treatment of Diabetes Mellitus. J Chem. 2017;2017:1-7. Go to original source...
  27. Bala E, Hazarika R, Singh P, et al. A biological overview of Hyaluronidase: A venom enzyme and its inhibition with plants materials. Mater Today Proc. 2018;5(2, Part 1):6406-6442. Go to original source...
  28. Grunwald T, Bockisch B, Spillner E, et al. Molecular cloning and expression in insect cells of honeybee venom allergen acid phosphatase (Api m 3). J Allergy Clin Immunol. 2006;117(4):848-854. Go to original source... Go to PubMed...
  29. Barboni E, Kemeny DM, Campos S, et al. The purification of acid phosphatase from honey bee venom (Apis mellifica). Toxicon Off J Int Soc Toxinology. 1987;25(10):1097-1103. Go to original source... Go to PubMed...
  30. Hoffman DR. Allergens in bee venom. III. Identification of allergen B of bee venom as an acid phosphatase. J Allergy Clin Immunol. 1977;59(5):364-366. Go to original source... Go to PubMed...
  31. Rady I, Siddiqui IA, Rady M, et al. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 2017;402:16-31. Go to original source... Go to PubMed...
  32. Shi W, Li C, Li M, et al. Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice. Appl Microbiol Biotechnol. 2016;100:5059-5067. Go to original source... Go to PubMed...
  33. Adade CM, Oliveira IRS, Pais JAR, et al. Melittin peptide kills Trypanosoma cruzi parasites by inducing different cell death pathways. Toxicon Off J Int Soc Toxinology. 2013;69:227-239. Go to original source... Go to PubMed...
  34. Skalickova S, Heger Z, Krejcova L, et al. Perspective of Use of Antiviral Peptides against Influenza Virus. Viruses. 2015;7(10):5428-5442. Go to original source... Go to PubMed...
  35. Do N, Weindl G, Grohmann L, et al. Cationic membrane-active peptides - anticancer and antifungal activity as well as penetration into human skin. Exp Dermatol. 2014;23(5):326-331. Go to original source... Go to PubMed...
  36. Jamasbi E, Mularski A, Separovic F. Model Membrane and Cell Studies of Antimicrobial Activity of Melittin Analogues. Curr Top Med Chem. 2016;16(1):40-45. Go to original source... Go to PubMed...
  37. Kreil G, Haiml L, Suchanek G. Stepwise cleavage of the pro part of promelittin by dipeptidylpeptidase IV. Evidence for a new type of precursor--product conversion. Eur J Biochem. 1980;111(1):49-58. Go to original source... Go to PubMed...
  38. Guha S, Ferrie RP, Ghimire J, et al. Applications and evolution of melittin, the quintessential membrane active peptide. Biochem Pharmacol. 2021;193:114769. Go to original source... Go to PubMed...
  39. Blank S, Seismann H, Bockisch B, et al. Identification, recombinant expression, and characterization of the 100 kDa high molecular weight Hymenoptera venom allergens Api m 5 and Ves v 3. J Immunol Baltim Md 1950. 2010;184(9):5403-5413. Go to original source... Go to PubMed...
  40. Yang J, Lee KS, Kim BY, et al. Anti-fibrinolytic and anti-microbial activities of a serine protease inhibitor from honeybee (Apis cerana) venom. Comp Biochem Physiol Toxicol Pharmacol CBP. 2017;201:11-18. Go to original source... Go to PubMed...
  41. Choo YM, Lee KS, Yoon HJ, et al. Dual Function of a Bee Venom Serine Protease: Prophenoloxidase-Activating Factor in Arthropods and Fibrin(ogen)olytic Enzyme in Mammals. PLOS ONE. 2010;5(5):e10393. Go to original source... Go to PubMed...
  42. Deng Y, Kim BY, Lee KY, et al. Lipolytic Activity of a Carboxylesterase from Bumblebee (Bombus ignitus) Venom. Toxins. 2021;13(4):239. Go to original source... Go to PubMed...
  43. Badawy MEI, Nasr HM, Rabea EI. Toxicity and biochemical changes in the honey bee Apis mellifera exposed to four insecticides under laboratory conditions. Apidologie. 2015;46(2):177-193. Go to original source...
  44. Lee S, Lee KS, Ok M, et al. Antimicrobial activity of major royal jelly protein 8 and 9 of honeybee (Apis mellifera) venom. J Asia-Pac Entomol. 2022;25(3):101964. Go to original source...
  45. Park HG, Lee KS, Kim BY, et al. Honeybee (Apis cerana) vitellogenin acts as an antimicrobial and antioxidant agent in the body and venom. Dev Comp Immunol. 2018;85:51-60. Go to original source... Go to PubMed...
  46. Muraro A, Roberts G, Worm M, et al. Anaphylaxis: guidelines from the European Academy of Allergy and Clinical Immunology. Allergy. 2014;69(8):1026-1045. Go to original source... Go to PubMed...
  47. Sturm GJ, Varga EM, Roberts G, et al. EAACI guidelines on allergen immunotherapy: Hymenoptera venom allergy. Allergy. 2018;73(4):744-764. Go to original source... Go to PubMed...
  48. Golden DBK, Demain J, Freeman T, et al. Stinging insect hypersensitivity: A practice parameter update 2016. Ann Allergy Asthma Immunol Off Publ Am Coll Allergy Asthma Immunol. 2017;118(1):28-54. Go to original source... Go to PubMed...
  49. Arzt L, Bokanovic D, Schwarz I, et al. Hymenoptera stings in the head region induce impressive, but not severe sting reactions. Allergy. 2016;71(11):1632-1634. Go to original source... Go to PubMed...
  50. Pravettoni V, Piantanida M, Primavesi L, et al. Basal platelet-activating factor acetylhydrolase: prognostic marker of severe Hymenoptera venom anaphylaxis. J Allergy Clin Immunol. 2014;133(4):1218-1220. Go to original source... Go to PubMed...
  51. Stoevesandt J, Hain J, Kerstan A, et al. Over- and underestimated parameters in severe Hymenoptera venom-induced anaphylaxis: cardiovascular medication and absence of urticaria/angioedema. J Allergy Clin Immunol. 2012;130(3):698-704.e1. Go to original source... Go to PubMed...
  52. Blum S, Gunzinger A, Müller UR, et al. Influence of total and specific IgE, serum tryptase, and age on severity of allergic reactions to Hymenoptera stings. Allergy. 2011;66(2):222-228. Go to original source... Go to PubMed...
  53. Guenova E, Volz T, Eichner M, et al. Basal serum tryptase as risk assessment for severe Hymenoptera sting reactions in elderly. Allergy. 2010;65(7):919-923. Go to original source... Go to PubMed...
  54. Ruëff F, Przybilla B, Biló MB, et al. Predictors of severe systemic anaphylactic reactions in patients with Hymenoptera venom allergy: importance of baseline serum tryptase-a study of the European Academy of Allergology and Clinical Immunology Interest Group on Insect Venom Hypersensitivity. J Allergy Clin Immunol. 2009;124(5):1047-1054. Go to original source... Go to PubMed...
  55. Sturm GJ, Heinemann A, Schuster C, et al. Influence of total IgE levels on the severity of sting reactions in Hymenoptera venom allergy. Allergy. 2007;62(8):884-889. Go to original source... Go to PubMed...
  56. Kucharewicz I, Bodzenta-Lukaszyk A, Szymanski W, et al. Basal serum tryptase level correlates with severity of hymenoptera sting and age. J Investig Allergol Clin Immunol. 2007;17(2):65-69.
  57. Turner PJ, Jerschow E, Umasunthar T, et al. Fatal Anaphylaxis: Mortality Rate and Risk Factors. J Allergy Clin Immunol Pract. 2017;5(5):1169-1178. Go to original source... Go to PubMed...
  58. Stoevesandt J, Sturm GJ, Bonadonna P, et al. Risk factors and indicators of severe systemic insect sting reactions. Allergy. 2020;75(3):535-545. Go to original source... Go to PubMed...
  59. Mueller U. Clinical presentation and pathogenesis. In: Mueller UR, editor. Insect sting allergy. In: 1990th ed. p. 33-65.
  60. Ring J, Messmer K. Incidence and severity of anaphylactoid reactions to colloid volume substitutes. Lancet Lond Engl. 1977;1(8009):466-469. Go to original source... Go to PubMed...
  61. Krishna MT, Ewan PW, Diwakar L, et al. Diagnosis and management of hymenoptera venom allergy: British Society for Allergy and Clinical Immunology (BSACI) guidelines. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2011;41(9):1201-1220. Go to original source... Go to PubMed...
  62. Stoevesandt J, Hosp C, Kerstan A, et al. Safety of 100 µg venom immunotherapy rush protocols in children compared to adults. Allergy Asthma Clin Immunol Off J Can Soc Allergy Clin Immunol. 2017;13:32. Go to original source... Go to PubMed...
  63. Bonifazi F, Jutel M, Biló BM, et al. Prevention and treatment of hymenoptera venom allergy: guidelines for clinical practice. Allergy. 2005;60(12):1459-1470. Go to original source... Go to PubMed...
  64. Ferreira RS, Almeida R a. MB, Barraviera SRCS, et al. Historical perspective and human consequences of Africanized bee stings in the Americas. J Toxicol Environ Health B Crit Rev. 2012;15(2):97-108. Go to original source... Go to PubMed...
  65. Przybilla B, Rueff F, Walker A, et al. Diagnose und Therapie der Bienen- und Wespengiftallergie. Allergo J [Internet]. [cited 2023 Dec 7];2011(6). Available from: https://www.springermedizin.de/diagnose-und-therapie-der-bienen-und-wespengiftallergie/10302386 Go to original source...
  66. Biló BM, Rueff F, Mosbech H, et al. Diagnosis of Hymenoptera venom allergy. Allergy. 2005;60(11):1339-1349. Go to original source... Go to PubMed...
  67. Schäfer T, Przybilla B. IgE antibodies to Hymenoptera venoms in the serum are common in the general population and are related to indications of atopy. Allergy. 1996;51(6):372-377. Go to original source...
  68. Golden DBK, Marsh DG, Kagey-Sobotka A, et al. Epidemiology of Insect Venom Sensitivity. JAMA. 1989;262(2):240-244. Go to original source...
  69. Sturm GJ, Kranzelbinder B, Schuster C, et al. Sensitization to Hymenoptera venoms is common, but systemic sting reactions are rare. J Allergy Clin Immunol. 2014;133(6):1635-1643.e1. Go to original source... Go to PubMed...
  70. Golden DBK. Insect sting anaphylaxis. Immunol Allergy Clin North Am. 2007;27(2):261-272, vii. Go to original source... Go to PubMed...
  71. Müller S, Rafei-Shamsabadi D, Jakob T. [Tricky cases in in-vitro diagnostics of hymenoptera venom allergy]. Hautarzt Z Dermatol Venerol Verwandte Geb. 2014;65(9):780-1,784-790. Go to original source... Go to PubMed...
  72. Vachová M, Panzner P. Diagnostika alergie na jed Hymenopter.
  73. Vachová M, Panzner P, Vlas T. Diagnostické postupy u pacientù s alergií na vèelí a vosí jed. Alergie [Internet]. [cited 2023 Dec 7];2012(3). Available from: https://docplayer.cz/5082495-Diagnosticke-postupy-u-pacientu-s-alergii-na-vceli-a-vosi-jed.html
  74. Golden DB, Marsh DG, Freidhoff LR, et al. Natural history of Hymenoptera venom sensitivity in adults. J Allergy Clin Immunol. 1997;100(6 Pt 1):760-766. Go to original source... Go to PubMed...
  75. Müller UR, Johansen N, Petersen AB, et al. Hymenoptera venom allergy: analysis of double positivity to honey bee and Vespula venom by estimation of IgE antibodies to species-specific major allergens Api m1 and Ves v5. Allergy. 2009;64(4):543-548. Go to original source... Go to PubMed...
  76. Jakob T, Rafei-Shamsabadi D, Spillner E, et al. Diagnostics in Hymenoptera venom allergy: current concepts and developments with special focus on molecular allergy diagnostics. Allergo J Int. 2017;26(3):93-105. Go to original source... Go to PubMed...
  77. Leimgruber A, Lantin JP, Frei PC. Comparison of two in vitro assays, RAST and CAP, when applied to the diagnosis of anaphylactic reactions to honeybee or yellow jacket venoms. Correlation with history and skin tests. Allergy. 1993;48(6):415-420. Go to original source... Go to PubMed...
  78. Vos B, Köhler J, Müller S, et al. Spiking venom with rVes v 5 improves sensitivity of IgE detection in patients with allergy to Vespula venom. J Allergy Clin Immunol. 2013;131(4):1225-1227, 1227.e1. Go to original source... Go to PubMed...
  79. Bilò BM, Bonifazi F. Epidemiology of insect-venom anaphylaxis. Curr Opin Allergy Clin Immunol. 2008;8(4):330-337. Go to original source... Go to PubMed...
  80. Goldberg A, Confino-Cohen R. Timing of venom skin tests and IgE determinations after insect sting anaphylaxis. J Allergy Clin Immunol. 1997;100(2):182-184. Go to original source... Go to PubMed...
  81. Spillner E, Blank S, Jakob T. Hymenoptera Allergens: From Venom to "Venome." Front Immunol [Internet]. 2014 [cited 2023 Dec 7];5. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2014.00077 Go to original source...
  82. Jappe U, Raulf-Heimsoth M, Hoffmann M, et al. In vitro hymenoptera venom allergy diagnosis: improved by screening for cross-reactive carbohydrate determinants and reciprocal inhibition. Allergy. 2006;61(10):1220-1229. Go to original source... Go to PubMed...
  83. Eberlein-König B, Varga R, Mempel M, et al. Comparison of basophil activation tests using CD63 or CD203c expression in patients with insect venom allergy. Allergy. 2006;61(9):1084-1085. Go to original source... Go to PubMed...
  84. Bonadonna P, Zanotti R, Melioli G, et al. The role of basophil activation test in special populations with mastocytosis and reactions to hymenoptera sting. Allergy. 2012;67(7):962-965. Go to original source... Go to PubMed...
  85. Brockow K, Jofer C, Behrendt H, et al. Anaphylaxis in patients with mastocytosis: a study on history, clinical features and risk factors in 120 patients. Allergy. 2008;63(2):226-232. Go to original source... Go to PubMed...
  86. Pucca MB, Cerni FA, Oliveira IS, et al. Bee Updated: Current Knowledge on Bee Venom and Bee Envenoming Therapy. Front Immunol. 2019;10:2090. Go to original source... Go to PubMed...
  87. Schumacher MJ, Schmidt JO, Egen NB, et al. Quantity, analysis, and lethality of European and Africanized honey bee venoms. Am J Trop Med Hyg. 1990;43(1):79-86. Go to original source... Go to PubMed...
  88. Funari SRC, Zeidler PR, Rocha HC, et al. Venom production by Africanized honeybees (Apis mellifera) and Africanized-European hybrids. J Venom Anim Toxins. 2001;7:190-198. Go to original source...
  89. Betten DP, Richardson WH, Tong TC, et al. Massive honey bee envenomation-induced rhabdomyolysis in an adolescent. Pediatrics. 2006;117(1):231-235. Go to original source... Go to PubMed...
  90. Sistema de Informação de Agravos de Notificação-Sinan: normas e rotinas. 2018.
  91. Pessenda G, Silva LC, Campos LB, et al. Human scFv antibodies (Afribumabs) against Africanized bee venom: Advances in melittin recognition. Toxicon Off J Int Soc Toxinology. 2016;112:59-67. Go to original source... Go to PubMed...
  92. Chippaux JP. Epidemiology of envenomations by terrestrial venomous animals in Brazil based on case reporting: from obvious facts to contingencies. J Venom Anim Toxins Trop Dis. 2015;21:13. Go to original source... Go to PubMed...
  93. Barbosa AN, Boyer L, Chippaux JP, et al. A clinical trial protocol to treat massive Africanized honeybee (Apis mellifera) attack with a new apilic antivenom. J Venom Anim Toxins Trop Dis. 2017;23(1):14. Go to original source... Go to PubMed...
  94. Barbosa AN, Ferreira RS, de Carvalho FCT, et al. Single-Arm, Multicenter Phase I/II Clinical Trial for the Treatment of Envenomings by Massive Africanized Honey Bee Stings Using the Unique Apilic Antivenom. Front Immunol. 2021;12:653151. Go to original source... Go to PubMed...
  95. Funayama JC, Pucca MB, Roncolato EC, et al. Production of human antibody fragments binding to melittin and phospholipase A2 in Africanised bee venom: minimising venom toxicity. Basic Clin Pharmacol Toxicol. 2012;110(3):290-297. Go to original source... Go to PubMed...
  96. Leiva CL, Geoghegan P, Lammer M, et al. In vivo neutralization of bee venom lethality by IgY antibodies. Mol Immunol. 2021;135:183-190. Go to original source... Go to PubMed...
  97. Du G, He P, Zhao J, et al. Polymeric microneedle-mediated transdermal delivery of melittin for rheumatoid arthritis treatment. J Control Release Off J Control Release Soc. 2021;336:537-548. Go to original source... Go to PubMed...
  98. Yang EJ, Kim SH, Yang SC, et al. Melittin restores proteasome function in an animal model of ALS. J Neuroinflammation. 2011;8:69. Go to original source... Go to PubMed...
  99. Park SH, Cho HJ, Jeong YJ, et al. Melittin inhibits TGF-β-induced pro-fibrotic gene expression through the suppression of the TGFβRII-Smad, ERK1/2 and JNK-mediated signaling pathway. Am J Chin Med. 2014;42(5):1139-1152. Go to original source... Go to PubMed...
  100. Park JH, Kum YS, Lee TI, et al. Melittin attenuates liver injury in thioacetamide-treated mice through modulating inflammation and fibrogenesis. Exp Biol Med Maywood NJ. 2011;236(11):1306-1313. Go to original source... Go to PubMed...
  101. Askari P, Namaei MH, Ghazvini K, . In vitro and in vivo toxicity and antibacterial efficacy of melittin against clinical extensively drug-resistant bacteria. BMC Pharmacol Toxicol. 2021;22(1):42. Go to original source... Go to PubMed...
  102. Akbari R, Hakemi-Vala M, Pashaie F, et al. Highly Synergistic Effects of Melittin with Conventional Antibiotics Against Multidrug-Resistant Isolates of Acinetobacter baumannii and Pseudomonas aeruginosa. Microb Drug Resist Larchmt N. 2019;25(2):193-202. Go to original source... Go to PubMed...
  103. Fieck A, Hurwitz I, Kang AS, et al. Trypanosoma cruzi: synergistic cytotoxicity of multiple amphipathic anti-microbial peptides to T. cruzi and potential bacterial hosts. Exp Parasitol. 2010;125(4):342-347. Go to original source... Go to PubMed...
  104. Xie X, Li Y, Zhu H, et al. Melittin Inhibits Growth of Human Osteosarcoma 143B Cells through Induction of Apoptosis via Suppressing the Wnt/β-catenin Signaling Pathway. Anticancer Agents Med Chem. 2022;22(18):3172-3181. Go to original source... Go to PubMed...
  105. Fan Q, Hu Y, Pang H, et al. Melittin protein inhibits the proliferation of MG63 cells by activating inositol-requiring protein-1α and X-box binding protein 1-mediated apoptosis. Mol Med Rep. 2014;9(4):1365-1370. Go to original source... Go to PubMed...
  106. Chen YQ, Zhu ZA, Hao YQ, et al. [Effect of melittin on apoptosis and necrosis of U2 OS cells]. Zhong Xi Yi Jie He Xue Bao. 2004;2(3):208-209. Go to original source... Go to PubMed...
  107. Havukainen H, Münch D, Baumann A, et al. Vitellogenin recognizes cell damage through membrane binding and shields living cells from reactive oxygen species. J Biol Chem. 2013;288(39):28369-28381. Go to original source... Go to PubMed...
  108. Kim S, Choi I, Han IH, et al. Enhanced Therapeutic Effect of Optimized Melittin-dKLA, a Peptide Agent Targeting M2-like Tumor-Associated Macrophages in Triple-Negative Breast Cancer. Int J Mol Sci. 2022;23(24):15751. Go to original source... Go to PubMed...
  109. Rayahin JE, Buhrman JS, Gemeinhart RA. Melittin-glutathione S-transferase fusion protein exhibits anti-inflammatory properties and minimal toxicity. Eur J Pharm Sci. 2014;65:112-121. Go to original source... Go to PubMed...
  110. Soman NR, Baldwin SL, Hu G, et al. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J Clin Invest. 2009;119(9):2830-2842. Go to original source... Go to PubMed...
  111. Huang C, Jin H, Qian Y, et al. Hybrid melittin cytolytic Peptide-driven ultrasmall lipid nanoparticles block melanoma growth in vivo. ACS Nano. 2013;7(7):5791-5800. Go to original source... Go to PubMed...
  112. Sun M, Wu Y, Zhou Z, e al. Co-delivery of EGCG and melittin with self-assembled fluoro-nanoparticles for enhanced cancer therapy. Aging. 2023;15(11):4875-4888. Go to original source... Go to PubMed...
  113. Ahn Y jun, Shin JS, Lee J, et al. Safety of essential bee venom pharmacopuncture as assessed in a randomized controlled double-blind trial. Journal of Ethnopharmacology. 2016;194:774-780. Go to original source... Go to PubMed...
  114. Jang S, Kim KH. Clinical Effectiveness and Adverse Events of Bee Venom Therapy: A Systematic Review of Randomized Controlled Trials. Toxins. 2020;12(9):558. Go to original source... Go to PubMed...
  115. Duc Nguyen M, Van Tran T, Vinh Nguyen Q, et al. Effectiveness of bee venom acupuncture for patients suffering from periarthritis humeroscapularis. J Tradit Chin Med Chung Tsa Chih Ying Wen Pan. 2023;43(4):795-800.
  116. Kwon YB, Kim JH, Yoon JH, et al. The analgesic efficacy of bee venom acupuncture for knee osteoarthritis: a comparative study with needle acupuncture. Am J Chin Med. 2001;29(2):187-199. Go to original source... Go to PubMed...
  117. Conrad VJ, Hazan LL, Latorre AJ, et al. Efficacy and Safety of Honey Bee Venom (Apis mellifera) Dermal Injections to Treat Osteoarthritis Knee Pain and Physical Disability: A Randomized Controlled Trial. J Altern Complement Med N Y N. 2019;25(8):845-855. Go to original source... Go to PubMed...
  118. Chen SY, Zhou P, Qin Y. [Treatment of Rheumatoid Arthritis by Bee-venom Acupuncture]. Zhen Ci Yan Jiu Acupunct Res. 2018;43(4):251-254.
  119. Wu H, Chen X, Zhang R, et al. Effect of Lingnan Painless Apitherapy combined with McKenzie Therapy on Patients with Lumbar Disc Herniation. Rehabil Med. :441-446.
  120. Han SM, Pak SC, Nicholls YM, et al. Evaluation of anti-acne property of purified bee venom serum in humans. J Cosmet Dermatol. 2016;15(4):324-329. Go to original source... Go to PubMed...
  121. You CE, Moon SH, Lee KH, et al. Effects of Emollient Containing Bee Venom on Atopic Dermatitis: A Double-Blinded, Randomized, Base-Controlled, Multicenter Study of 136 Patients. Ann Dermatol. 2016;28(5):593-599. Go to original source... Go to PubMed...