MMSL X:X | DOI: 10.31482/mmsl.2025.003
RESILIENT PLATFORM FOR MICROBIOME DATABASES: ESSENTIAL ATTRIBUTESReview article
- Department of Informatics and Cyber Operations, University of Defence, Brno, Czech Republic
The rapid growth of microbiome research is hindered by significant challenges in data management, including data fragmentation across disparate silos, a lack of methodological standardization, and barriers to advanced privacy-preserving analysis. To address these issues, this article proposes a conceptual architectural blueprint for a resilient, scalable, and integrated platform for microbiome data. Our proposed architecture is a modular, cloud-native system designed to support the entire research lifecycle. Key attributes include a multi-layered microservices framework to ensure scalability, adherence to FAIR (Findable, Accessible, Interoperable, Reusable) data principles, and native support for longitudinal data tracking. Crucially, the platform incorporates integrated services for advanced AI/ML analysis and a coordinator for federated learning, enabling collaborative model development without centralizing sensitive data. By providing a robust infrastructure that combines standardized data management with powerful, privacy-aware analytical tools, our proposed model aims to empower researchers, enhance reproducibility, and accelerate discoveries into the complex relationship between the microbiome and human health.
Keywords: Microbiome Database; GMrepo; Data Sharing in Microbiology; Bioinformatics Tools; Database Interoperability
Received: April 20, 2025; Revised: June 8, 2025; Accepted: July 9, 2025; Prepublished online: July 28, 2025
References
- The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207-214. doi: 10.1038/nature11234.
Go to original source...
Go to PubMed...
- Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701-712. doi: 10.1038/nrn3346.
Go to original source...
Go to PubMed...
- Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016;14(8):e1002533. doi: 10.1371/journal.pbio.1002533.
Go to original source...
Go to PubMed...
- Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature. 2007;449(7164):804-810. doi: 10.1038/nature06244.
Go to original source...
Go to PubMed...
- Li W, Chen X, Xie L, et al. Bioelectrochemical systems for groundwater remediation: The development trend and research front revealed by bibliometric analysis. Water (Basel). 2019;11(8):1532. doi: 10.3390/w11081532.
Go to original source...
- James G, Witten D, Hastie T, et al. An introduction to statistical learning. New York: Springer; 2013. 426 p. doi: 10.1007/978-1-0716-1418-1
Go to original source...
- Gonzalez A, Knight R. Advancing analytical algorithms and pipelines for billions of microbial sequences. Nat Rev Microbiol. 2012;10(2):64-71. doi: 10.1016/j.copbio.2011.11.028
Go to original source...
Go to PubMed...
- Bry F, Kröger P. A Computational Biology Database Digest: Data, Data Analysis, and Data Management. Distrib Parallel Databases. 2003;13(1):7-42. doi: 10.1023/A:1021540705916.
Go to original source...
- Ankrah NYD, Bernstein DB, Biggs M, et al. Enhancing Microbiome Research through Genome-Scale Metabolic Modeling. mSystems. 2021;6(6):e0059921. doi: 10.1128/mSystems.00599-21.
Go to original source...
Go to PubMed...
- Hitch TCA, Afrizal A, Riedel T, et al. Recent advances in culture-based gut microbiome research. Int J Med Microbiol. 2021;311(3):151485. doi: 10.1016/j.ijmm.2021.151485.
Go to original source...
Go to PubMed...
- NCBI Resource Coordinators. Sequence Read Archive (SRA) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); [cited 2024 Aug 22]. Available from: https://www.ncbi.nlm.nih.gov/sra
- EMBL-EBI. European Nucleotide Archive [Internet]. Hinxton (UK): European Molecular Biology Laboratory - European Bioinformatics Institute; [cited 2024 Aug 22]. Available from: https://www.ebi.ac.uk/ena
- Cock PJA, Fields CJ, Goto N, et al. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 2010;38(6):1767-1771. doi: 10.1093/nar/gkp1137.
Go to original source...
Go to PubMed...
- McDonald D, Hyde E, Debelius JW, et al. American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems. 2018;3(3):e00031-18. doi: 10.1128/msystems.00031-18.
Go to original source...
Go to PubMed...
- QIAGEN. QIAGEN CLC genomics cloud engine [Internet]. Hilden (DE): QIAGEN; [cited 2024 Aug 22]. Available from: https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/enterprise-ngs-solutions/qiagen-clc-genomics-cloud-engine/
- Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174-180. doi: 10.1038/nature09944.
Go to original source...
Go to PubMed...
- Yilmaz P, Parfrey LW, Yarza P, et al. The SILVA and "All-species Living Tree Project (LTP)" taxonomic frameworks. Nucleic Acids Res. 2014;42(Database issue):643-648. doi: 10.1093/nar/gkt1209.
Go to original source...
Go to PubMed...
- Eren AM, Maignien L, Miller EL, et al. Minimum Entropy Decomposition: Unsupervised Clustering for Variable-Length Reads. Nat Methods. 2015 Jul;12(7):641-643. doi: 10.1038/nmeth.3368.
Go to original source...
Go to PubMed...
- Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335-336. doi: 10.1038/nmeth.f.303.
Go to original source...
Go to PubMed...
- Dorst M, Zeevenhooven N, Wilding R, et al. FAIR compliant database development for human microbiome data samples. Front Cell Infect Microbiol. 2024;14:1384809. doi: 10.3389/fcimb.2024.1384809. PMID: 38774631; PMCID: PMC11106358.
Go to original source...
Go to PubMed...
- Kumar B, Lorusso E, Fosso B, et al. A comprehensive overview of microbiome data in the light of machine learning applications: categorization, accessibility, and future directions. Front Microbiol. 202413;15:1343572. doi: 10.3389/fmicb.2024.1343572. PMID: 38419630; PMCID: PMC10900530.
Go to original source...
Go to PubMed...
- Przymus P, Rykaczewski K, Martín-Segura A, et al. Deep learning in microbiome analysis: a comprehensive review of neural network models. Front Microbiol. 2025;15:1516667. doi: 10.3389/fmicb.2024.1516667. PMID: 39911715; PMCID: PMC11794229.
Go to original source...
Go to PubMed...
- Dakal TC, Xu C, Kumar A. Advanced computational tools, artificial intelligence and machine-learning approaches in gut microbiota and biomarker identification. Front Med Technol. 2025;6:1434799. doi: 10.3389/fmedt.2024.1434799. PMID: 40303946; PMCID: PMC12037385.
Go to original source...
Go to PubMed...
- Zhang F, Kreuter D, Chen Y, et al. Recent methodological advances in federated learning for healthcare. Patterns (N Y). 2024;5(6):101006. doi: 10.1016/j.patter.2024.101006. PMID: 39005485; PMCID: PMC11240178.
Go to original source...
Go to PubMed...
- Sinaci AA, Gencturk M, Alvarez-Romero C, et al. Privacy-preserving federated machine learning on FAIR health data: A real-world application. Comput Struct Biotechnol J. 2024;24:136-145. doi: 10.1016/j.csbj.2024.02.014. PMID: 38434250; PMCID: PMC10904920.
Go to original source...
Go to PubMed...