VZL 2009, 78(4):158-169

Mitogen Activated Protein Kinases (MAPK), Ionising Radiation and Transcription Regulation

Jaroslav Pejchal ORCID...1, Jan Österreicher2, Lenka Zárybnická ORCID...2, Zuzana Šinkorová ORCID...2, Aleš Tichý ORCID...2, Jiřina Vávrová2
1 Univerzita obrany, Fakulta vojenského zdravotnictví, Centrum pokročilých studií, Hradce Králové
2 Univerzita obrany, Fakulta vojenského zdravotnictví, katedra radiobiologie, Hradce Králové

Mitogenem aktivované proteinové kinázy (MAPK) jsou superrodinou evolučně konzervovaných kináz eukaryotických buněk podílejících se na udržování buněčné homeostázy. Ionizující záření stabilitu vnitřního prostředí narušuje a tím vede k časově, dávkově a buněčně specifické kompenzatorní aktivaci MAPK. MAPK následně sehrávají kritickou úlohu v modulaci buněčného programu genové exprese, jejímž prostřednictvím reguluje tak důležité biologické děje, jakými jsou proliferace, diferenciace, přežití buněk či naopak apoptóza. Tato práce pojednává o jednotlivých skupinách MAPK, jejich vztahu k ionizujícímu záření a mechanizmu, jakým mohou MAPK zasahovat do procesu genové transkripce.

Keywords: MAPK; Ionizující záření; Transkripce

Mitogen activated protein kinases (MAPK) are a superfamily of evolutionary-conserved eukaryotic kinases implicated in maintaining of cellular homeostasis. Ionising radiation impairs homeostasis and leads to time, dose and cellular specific compensatory MAPK activation. MAPK plays a critical role in modulation of gene expression that controls important cellular processes, such as proliferation, differentiation, cell survival, or apoptosis. This work discusses particular MAPK groups, their relation to ionising radiation and the mechanism which MAPK use to regulate processes of gene transcription.

Keywords: MAPK; Ionising radiation; Transcription

Received: May 25, 2009; Published: December 1, 2009  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Pejchal, J., Österreicher, J., Zárybnická, L., Šinkorová, Z., Tichý, A., & Vávrová, J. (2009). Mitogen Activated Protein Kinases (MAPK), Ionising Radiation and Transcription Regulation. Vojenské Zdravotnické Listy78(4), 158-169
Download citation

References

  1. ABE, J., et al. Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase. J. Biol. Chem., 1996, vol. 271, no. 28, p. 16586-16590. Go to original source... Go to PubMed...
  2. ADACHI, M. - FUKUDA, M. - NISHIDA, E. Two coexisting mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer. EMBO J., 1999, vol. 18, no. 19, p. 5347-5358. Go to original source... Go to PubMed...
  3. ADAMS, RH., et al. Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol. Cell, 2000, vol. 6, no. 1, p. 109-116. Go to original source... Go to PubMed...
  4. ALVARO-BLANCO, J., et al. A novel factor distinct from E2F mediates C-MYC promoter activation through its E2F element during exit from quiescence. Carcinogenesis, 2009, (přijato do tisku). Go to original source...
  5. ARTHUR, JS. - COHEN, P. MSK1 is required for CREB phosphorylation in response to mitogens in mouse embryonic stem cells. FEBS Lett., 2000, vol. 482, no. 1/2, p. 44-48. Go to original source... Go to PubMed...
  6. ARTHUR, JS. MSK activation and physiological roles. Front. Biosci., 2008, vol. 13, p. 5866-5879. Go to original source... Go to PubMed...
  7. BAKKENIST, CJ. - KASTAN, MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 2003, vol. 421, no. 6922, p. 499-506. Go to original source... Go to PubMed...
  8. BARKER, S., et al. Identification of mammalian proteins cross-linked to DNA by ionizing radiation. J. Biol. Chem., 2005, vol. 280, no. 40, p. 33826-33838. Go to original source... Go to PubMed...
  9. BARRETT, LE., et al. Elk-1 associates with the mitochondrial permeability transition pore complex in neurons. Proc. Natl. Acad. Sci. USA, 2006, vol. 103, no. 13, p. 5155-5160. Go to original source... Go to PubMed...
  10. BASKARAN, R., et al. Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. Nature, 1997, vol. 387, no. 6632, p. 516-519. Go to original source... Go to PubMed...
  11. BEARDMORE, VA., et al. Generation and characterization of p38beta (MAPK11) gene-targeted mice. Mol. Cell. Biol., 2005, vol. 25, no. 23, p. 10454-10464. Go to original source... Go to PubMed...
  12. BEAUDEUX, JL., et al. Resistance of lipoprotein(a) to lipid peroxidation induced by oxygenated free radicals produced by gamma radiolysis: a comparison with low-density lipoprotein. Biochem. J., 1996, vol. 314, p. 277-284. Go to original source... Go to PubMed...
  13. BEIER, R., et al. Induction of cyclin E-cdk2 kinase activity, E2F-dependent transcription and cell growth by Myc are genetically separable events. EMBO J., 2000, vol. 19, no. 21, p. 5813-5823. Go to original source... Go to PubMed...
  14. BEKKER-JENSEN, S., et al. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J. Cell Biol. 2006, vol. 173, no. 2, p. 195-206. Go to original source... Go to PubMed...
  15. BOGOYEVITCH, MA. - COURT, NW. Counting on mitogen-activated protein kinases-ERKs 3, 4, 5, 6, 7 and 8. Cell. Signal., 2004, vol. 16, no. 12, p. 1345-1354. Go to original source... Go to PubMed...
  16. BOGOYEVITCH, MA., et al. Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia//reperfusion. Circ. Res., 1996, vol. 79, no. 2, p. 162-173. Go to original source... Go to PubMed...
  17. BOULTON, TG., et al. An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science, 1990, vol. 249, no. 4964, p. 64-67. Go to original source... Go to PubMed...
  18. BOYLE, WJ., et al. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell, 1991, vol. 64, no. 3, p. 573-584. Go to original source... Go to PubMed...
  19. BURMA, S., et al. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J. Biol. Chem. 2001, vol. 276, no. 45, p. 42462-42467. Go to original source... Go to PubMed...
  20. BUSCHBECK, M., et al. Abl-kinase-sensitive levels of ERK5 and its intrinsic basal activity contribute to leukaemia cell survival. EMBO Rep., 2005, vol. 6, no. 1, p. 63-69. Go to original source... Go to PubMed...
  21. CAVIGELLI, M., et al. Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO J., 1995, vol. 14, no. 23, p. 5957-5964. Go to original source... Go to PubMed...
  22. CERIGNOLI, F., et al. Regulation of MAP kinases by the VHR dual-specific phosphatase: implications for cell growth and differentiation. Cell Cycle, 2006, vol. 5, no. 19, p. 2210-2215. Go to original source... Go to PubMed...
  23. COULOMBE, P. - MELOCHE, S. Atypical mitogen-activated protein kinases: structure, regulation and functions. Biochim. Biophys. Acta, 2007, vol. 1773, no. 8, p. 1376-1387. Go to original source... Go to PubMed...
  24. DAVIE, JR. Covalent modifications of histones: expression from chromatin templates. Curr. Opin. Genet. Dev., 1998, vol. 8, no. 2, p. 173-178. Go to original source... Go to PubMed...
  25. DENT, P., et al. MAPK pathways in radiation responses. Oncogene, 2003, vol. 22, no. 37, p. 5885-5896. Go to original source... Go to PubMed...
  26. DENT, P., et al. Radiation-induced release of transforming growth factor alpha activates the epidermal growth factor receptor and mitogen-activated protein kinase pathway in carcinoma cells, leading to increased proliferation and protection from radiation-induced cell death. Mol. Biol. Cell, 1999, vol. 10, no. 8, p. 2493-2506. Go to original source... Go to PubMed...
  27. DUNN, KL. - DAVIE, JR. Stimulation of the Ras-MAPK pathway leads to independent phosphorylation of histone H3 on serine 10 and 28. Oncogene, 2005, vol. 24, no. 21, p. 3492-3502. Go to original source... Go to PubMed...
  28. EILERS, M. - EISENMAN, RN. Myc's broad reach. Genes. Dev., 2008, vol. 22, no. 20, p. 2755-2766. Go to original source... Go to PubMed...
  29. ELDOR, A., et al. Perturbation of endothelial functions by ionizing irradiation: effects on prostaglandins, chemoattractants and mitogens. Semin. Thromb. Hemost., 1989, vol. 15, no. 2, p. 215-225. Go to original source... Go to PubMed...
  30. ELSNER, RH. - ZIEGLER, K. Determination of the apparent functional molecular mass of the hepatocellular sodium-dependent taurocholate transporter by radiation inactivation. Biochim. Biophys. Acta, 1989, vol. 983, no. 1, p. 113-117. Go to original source... Go to PubMed...
  31. ELSNER, RH. - ZIEGLER, K. Radiation inactivation of multispecific transport systems for bile acids and xenobiotics in basolateral rat liver plasma membrane vesicles. J. Biol. Chem., 1992, vol. 267, no. 14, p. 9788-9793. Go to original source... Go to PubMed...
  32. EPPERLY, MW., et al. Manganese [correction of Magnesium] superoxide dismutase (MnSOD) plasmid/liposome pulmonary radioprotective gene therapy: modulation of irradiation-induced mRNA for IL-I, TNF-alpha, and TGF-beta correlates with delay of organizing alveolitis/fibrosis. Biol. Blood Marrow Transplant., 1999, vol. 5, no. 4, p. 204-214. Go to original source... Go to PubMed...
  33. ESCARGUEIL, AE., et al. What histone code for DNA repair? Mutat. Res., 2008, vol. 658, no. 3, p. 259-270. Go to original source... Go to PubMed...
  34. FALCK, J. - COATES, J. - JACKSON, SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature. 2005, vol. 434, no. 7033, p. 605-611. Go to original source... Go to PubMed...
  35. FEATHERSTONE, C. - JACKSON, SP. Ku, a DNA repair protein with multiple cellular functions? Mutat. Res., 1999, vol. 434, no. 1, p. 3-15. Go to original source... Go to PubMed...
  36. FUCHS, SY., et al. c-Jun NH2-terminal kinases target the ubiquitination of their associated transcription factors. J. Biol. Chem., 1997, vol. 272, no. 51, p. 32163-32168. Go to original source... Go to PubMed...
  37. GANDHI, NM. - GOPALASWAMY, UV. - NAIR, CK. Radiation protection by disulfiram: protection of membrane and DNA in vitro and in vivo against gamma-radiation. J. Radiat. Res. (Tokyo), 2003, vol. 44, no. 3, p. 255-259. Go to original source... Go to PubMed...
  38. GARCIA, L., et al. PP1/PP2A phosphatases inhibitors okadaic acid and calyculin A block ERK5 activation by growth factors and oxidative stress. BS Lett., 2002, vol. 523, no. 1-3, p. 90-94. Go to original source... Go to PubMed...
  39. GOLDKORN, T., et al. EGF receptor phosphorylation is affected by ionizing radiation. Biochim. Biophys. Acta, 1997, vol. 1358, no. 3, p. 289-299. Go to original source... Go to PubMed...
  40. GU, Q., et al. Basic fibroblast growth factor inhibits radiation-induced apoptosis of HUVECs. I. The PI3K/AKT pathway and induction of phosphorylation of BAD. Radiat. Res., 2004, vol. 161, no. 6) p. 692-702. Go to original source... Go to PubMed...
  41. GUPTA, S. - SETH, A. - DAVIS, RJ. Transactivation of gene expression by Myc is inhibited by mutation at the phosphorylation sites Thr-58 and Ser-62. Proc. Natl. Acad. Sci. USA, 1993, vol. 90, p. 3216-3220. Go to original source... Go to PubMed...
  42. GUPTA, S., et al. Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science, 1995, vol. 267, p. 389-393. Go to original source... Go to PubMed...
  43. HAGAN, M., et al. Ionizing radiation-induced mitogen-activated protein (MAP) kinase activation in DU145 prostate carcinoma cells: MAP kinase inhibition enhances radiation-induced cell killing and G2/M-phase arrest. Radiat. Res., 2000, vol. 153, no. 4, p. 371-383. Go to original source... Go to PubMed...
  44. CHAKRABORTY, AA. - TANSEY, WP. Adenoviral E1A function through Myc. Cancer Res., 2009, vol. 69, no. 1, p. 6-9. Go to original source... Go to PubMed...
  45. CHAMBARD, JC., et al. ERK implication in cell cycle regulation. Biochim. Biophys. Acta, 2007, vol. 1773, no. 8, p. 1299-1310. Go to original source... Go to PubMed...
  46. CHAO, TH., et al. MEKK3 directly regulates MEK5 activity as part of the big mitogen-activated protein kinase 1 (BMK1) signaling pathway. J. Biol. Chem., 1999, vol. 274, no. 51, p. 36035-36038. Go to original source... Go to PubMed...
  47. CHEESEMAN, KH., et al. Studies on lipid peroxidation in normal and tumour tissues. The Yoshida rat liver tumour. Biochem. J., 1988, vol. 250, no. 1, p. 247-252. Go to original source... Go to PubMed...
  48. CHEN, RH. - SARNECKI, C. - BLENIS, J. Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol. Cell. Biol., 1992, vol. 12, no. 3, p. 915-927. Go to original source... Go to PubMed...
  49. CHEN, W., et al. Tumor promoter arsenite activates extracellular signal-regulated kinase through a signaling pathway mediated by epidermal growth factor receptor and Shc. Mol. Cell. Biol., 1998, vol. 18, no. 9, p. 5178-5188. Go to original source... Go to PubMed...
  50. CHEN, Z., et al. MAP kinases. Chem. Rev., 2001, vol. 101, no. 8, p. 2449-2476. Go to original source... Go to PubMed...
  51. CHEUNG, EC. - SLACK, RS. Emerging role for ERK as a key regulator of neuronal apoptosis. Sci. STKE, 2004, vol. 2004, no. 251, p. 45. Go to original source... Go to PubMed...
  52. CHOI, SY., et al. Activation of Bak and Bax through c-abl-protein kinase Cdelta-p38 MAPK signaling in response to ionizing radiation in human non-small cell lung cancer cells. J. Biol. Chem., 2006, vol. 281, no. 11, p. 7049-7059. Go to original source... Go to PubMed...
  53. CHUN, HH. - GATTI, RA. Ataxia-telangiectasia, an evolving phenotype. DNA Repair (Amst.), 2004, vol. 3, no. 8-9, p. 1187-1196. Go to original source... Go to PubMed...
  54. JIN, S., et al. Binding of Ku and c-Abl at the kinase homology region of DNA-dependent protein kinase catalytic subunit. J. Biol. Chem., 1997, vol. 272, no. 40, p. 24763-24766. Go to original source... Go to PubMed...
  55. JOHANNESSEN, M. - DELGHANDI, MP. - MOENS, U. What turns CREB on? Cell. Signal., 2004, vol. 16, no. 11, p. 1211-1227. Go to original source... Go to PubMed...
  56. KANNAN, N. - NEUWALD, AF. Evolutionary constraints associated with functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK, and CK2alpha. Protein. Sci., 2004, vol. 13, no. 8, p. 2059-2077. Go to original source... Go to PubMed...
  57. KATZ, M. - AMIT, I. - YARDEN, Y. Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim. Biophys. Acta, 2007, vol. 1773, no. 8, p. 1161-1176. Go to original source... Go to PubMed...
  58. KHARBANDA, S., et al. Activation of MEK kinase 1 by the c-Abl protein tyrosine kinase in response to DNA damage. Mol. Cell. Biol., 2000, vol. 20, no. 14, p. 4979-4989. Go to original source... Go to PubMed...
  59. KHARBANDA, S., et al. Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents. Nature, 1995, vol. 376, no. 6543, p. 785-788. Go to original source... Go to PubMed...
  60. KHARBANDA, S., et al. c-Abl activation regulates induction of the SEK1/stress-activated protein kinase pathway in the cellular response to 1-beta-D-arabinofuranosylcytosine. J. Biol. Chem., 1995, vol. 270, no. 51, p. 30278-30281. Go to original source... Go to PubMed...
  61. KHARBANDA, S., et al. Functional interaction between DNA-PK and c-Abl in response to DNA damage. Nature, 1997, vol. 386, no. 6626, p. 732-325. Go to original source... Go to PubMed...
  62. KHARBANDA, S., et al. Functional role for the c-Abl protein tyrosine kinase in the cellular response to genotoxic stress. Biochim. Biophy. Acta, 1997, vol. 1333, no. 2, p. 1-7. Go to original source... Go to PubMed...
  63. KNEBEL, A., et al. Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J., 1996, vol. 15, no. 19, p. 5314-5325. Go to original source... Go to PubMed...
  64. KOROTAYEV, K. - CHAUSSEPIED, M. - GINSBERG, D. ERK activation is regulated by E2F1 and is essential for E2F1-induced S phase entry. Cell. Signal., 2008, vol. 20, no. 6, p. 1221-1226. Go to original source... Go to PubMed...
  65. KOSHIKAWA, T., et al. Alterations of DNA copy number and expression in genes involved in cell cycle regulation and apoptosis signal pathways in gamma-radiation-sensitive SX9 cells and -resistant SR-1 cells. Radiat. Res., 2005, vol. 163, no. 4, p. 374-383. Go to original source... Go to PubMed...
  66. KOUZARIDE, T. Chromatin Modifications and Their Function. Cell, 2007, vol. 128, no. 4, p. 693-705. Go to original source... Go to PubMed...
  67. KUAN, CY., et al. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron, 1999, vol. 22, no. 4, p. 667-676. Go to original source... Go to PubMed...
  68. KUIDA, K. - BOUCHER, DM. Functions of MAP kinases: insights from gene-targeting studies. J. Biochem., 2004, vol. 135, no. 6, p. 653-656. Go to original source... Go to PubMed...
  69. KYRIAKIS, JM. - AVRUCH, J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev., 2001, vol. 81, no. 2, p. 807-869. Go to original source... Go to PubMed...
  70. KYRIAKIS, JM. - AVRUCH, J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J. Biol. Chem., 1996, vol. 271, no. 40, p. 24313-24316. Go to original source... Go to PubMed...
  71. KYRIAKIS, JM., et al. The stress-activated protein kinase subfamily of c-Jun kinases. Nature, 1994, vol. 369, no. 6476, p. 156-160. Go to original source... Go to PubMed...
  72. LAVAUR, J., et al. A TAT-DEF-Elk-1 peptide regulates the cytonuclear trafficking of Elk-1 and controls cytoskeleton dynamics. J. Neurosci., 2007, vol. 27, no. 52, p. 14448-14458. Go to original source... Go to PubMed...
  73. LAWLER, S., et al. Synergistic activation of SAPK1/JNK1 by two MAP kinase kinases in vitro. Curr. Biol., 1998, vol. 8, no. 25, p. 1387-1390. Go to original source... Go to PubMed...
  74. LEACH, JK., et al. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res., 2001, vol. 61, no. 10, p. 3894-3901. Go to PubMed...
  75. LEE, JD. - ULEVITCH, RJ. - HAN, J. Primary structure of BMK1: a new mammalian map kinase. Biochem. Biophys. Res. Commun., 1995, vol. 213, no. 2, p. 715-724. Go to original source... Go to PubMed...
  76. LEE, SA. - DRITSCHILO, A. - JUNG, M. Impaired ionizing radiation-induced activation of a nuclear signal essential for phosphorylation of c-Jun by dually phosphorylated c-Jun amino-terminal kinases in ataxia telangiectasia fibroblasts. J. Biol. Chem., 1998, vol. 273, no. 49, p. 32889-32894. Go to original source... Go to PubMed...
  77. LEE, SR., et al. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem., 1998, vol. 273, no. 25, p. 15366-15372. Go to original source... Go to PubMed...
  78. LECHNER, C., et al. ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc. Natl. Acad. Sci. USA, 1996, vol. 93, no. 9, p. 4355-4359. Go to original source... Go to PubMed...
  79. LI, Z., et al. The primary structure of p38 gamma: a new member of p38 group of MAP kinases. Biochem. Biophys. Res. Commun., 1996, vol. 228, no. 2, p. 334-340. Go to original source... Go to PubMed...
  80. LIN, A., et al. Casein kinase II is a negative regulator of c-Jun DNA binding and AP-1 activity. Cell, 1992, vol. 70, no. 5, p. 777-789. Go to original source... Go to PubMed...
  81. LIN, Q., et al. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science, 1997, vol. 276, no. 5317, p. 1404-1407. Go to original source... Go to PubMed...
  82. LISNOCK, J., et al. Activation of JNK3 alpha 1 requires both MKK4 and MKK7: kinetic characterization of in vitro phosphorylated JNK3 alpha 1. Biochemistry, 2000, vol. 39, no. 11, p. 3141-3148. Go to original source... Go to PubMed...
  83. LIU, ZG., et al. Three distinct signalling responses by murine fibroblasts to genotoxic stress. Nature, 1996, vol. 384, no. 6606, p. 273-276. Go to original source... Go to PubMed...
  84. LIVINGSTONE, C. - PATEL, G. - JONES, N. ATF-2 contains a phosphorylation-dependent transcriptional activation domain. EMBO J., 1995, vol. 14, no. 8, p. 1785-1797. Go to original source... Go to PubMed...
  85. LUKAS, J. - LUKAS, C. - BARTEK, J. Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair (Amst.). 2004, vol. 3, no. 8/9, p. 997-1007. Go to original source... Go to PubMed...
  86. MACDONALD, N., et al. Molecular basis for the recognition of phosphorylated and phosphoacetylated histone h3 by 14-3-3. Mol. Cell., 2005, vol. 20, p. 199-211. Go to original source... Go to PubMed...
  87. MAIZELS, ET., et al. Developmental regulation of mitogen-activated protein kinase-activated kinases-2 and -3 (MAPKAPK-2/-3) in vivo during corpus luteum formation in the rat. Mol. Endocrinol., 2001, vol. 15, no. 5, p. 716-733. Go to original source... Go to PubMed...
  88. MARAIS, R., et al. Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J. Biol. Chem., 1997, vol. 272, no. 7, p. 4378-4383. Go to original source... Go to PubMed...
  89. MARTIN-BLANCO, E. p38 MAPK signalling cascades: ancient roles and new functions. Bioessays, 2000, vol. 22, no. 7, p. 637-645. Go to original source... Go to PubMed...
  90. MAYR, B. - MONTMINY, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol., 2001, vol. 2, no. 8, p. 599-609. Go to original source... Go to PubMed...
  91. MELOCHE, S. - POUYSSEGUR, J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene, 2007, vol. 26, no. 22, p. 3227-3239. Go to original source... Go to PubMed...
  92. MERTENS, S. - CRAXTON, M. - GOEDERT, M. SAP kinase-3, a new member of the family of mammalian stress-activated protein kinases. FEBS Lett., 1996, vol. 383, no. 3, p. 273-276. Go to original source... Go to PubMed...
  93. MEVES, A., et al. H(2)O(2) mediates oxidative stress-induced epidermal growth factor receptor phosphorylation. Toxicol. Lett., 2001, vol. 122, no. 3, p. 205-214. Go to original source... Go to PubMed...
  94. MOCHAN, TA., et al. 53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Res. 2003, vol. 63, no. 24, p. 8586-8591. Go to PubMed...
  95. MUDGETT, JS., et al. Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 19, p. 10454-10459. Go to original source... Go to PubMed...
  96. MUKHERJEE, JJ. - SIKKA, HC. Attenuation of BPDE-induced p53 accumulation by TPA is associated with a decrease in stability and phosphorylation of p53 and downregulation of NFkappaB activation: role of p38 MAP kinase. Carcinogenesis, 2006, vol. 27, no. 3, p. 631-638. Go to original source... Go to PubMed...
  97. NAKAMURA, K. - JOHNSON, GL. PB1 domains of MEKK2 and MEKK3 interact with the MEK5 PB1 domain for activation of the ERK5 pathway. J. Biol. Chem., 2003, vol. 278, no. 39, p. 36989-36992. Go to original source... Go to PubMed...
  98. NOGUCHI, K., et al. Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. J. Biol. Chem., 1999, vol. 274, p. 32580-32587. Go to original source... Go to PubMed...
  99. O'DONNELL, KA., et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 2005, vol. 435, no. 7043, p. 839-843. Go to original source... Go to PubMed...
  100. OUWENS, DM., et al. Growth factors can activate ATF2 via a two-step mechanism: phosphorylation of Thr71 through the Ras-MEK-ERK pathway and of Thr69 through RalGDS-Src-p38. EMBO J., 2002, vol. 21, p. 3782-3793. Go to original source... Go to PubMed...
  101. PAGES, G., et al. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science, 1999, vol. 286, no. 5443, p. 1374-1377. Go to original source... Go to PubMed...
  102. PANDEY, P., et al. Activation of p38 mitogen-activated protein kinase by c-Abl-dependent and -independent mechanisms. J. Biol. Chem., 1996, vol. 271, no. 39, p. 23775-23779. Go to original source... Go to PubMed...
  103. PANTA, GR., et al. ATM and the catalytic subunit of DNA-dependent protein kinase activate NF-kappaB through a common MEK/extracellular signal-regulated kinase/p90(rsk) signaling pathway in response to distinct forms of DNA damage. Mol. Cell. Biol., 2004, vol. 24, no. 5, p. 1823-1835. Go to original source... Go to PubMed...
  104. PAYNE, DM., et al. Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBO J., 1991, vol. 10, no. 4, p. 885-892. Go to original source... Go to PubMed...
  105. PEARSON, G., et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev., 2001, vol. 22, no. 2, p. 153-183. Go to original source... Go to PubMed...
  106. PERRY, RL. - PARKER, MH. - RUDNICKI, MA. Activated MEK1 binds the nuclear MyoD transcriptional complex to repress transactivation. Mol. Cell, 2001, vol. 8, no. 2, p. 291-301. Go to original source... Go to PubMed...
  107. POKHOLOK, DK., et al. Activated signal transduction kinases frequently occupy target genes. Science, 2006, vol. 313, no. 5786, p. 533-536. Go to original source... Go to PubMed...
  108. POUYSSEGUR, J. - VOLMAT, V. - LENORMAND, P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem. Pharmacol., 2002, vol. 64, no. 5/6, p. 755-763. Go to original source... Go to PubMed...
  109. QIU, M. - LANGE, CA. MAP kinases couple multiple functions of human progesterone receptors: degradation, transcriptional synergy, and nuclear association. J. Steroid. Biochem. Mol. Biol., 2003, vol. 85, no. 2/5, p. 147-157. Go to original source... Go to PubMed...
  110. RAINGEAUD, J., et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem., 1995, vol. 270, no. 13, p. 7420-7426. Go to original source... Go to PubMed...
  111. RAITANO, AB., et al. The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc. Natl. Acad. Sci. USA, 1995, vol. 92, no. 25, p. 11746-11750. Go to original source... Go to PubMed...
  112. RAMAN, M., et al. TAO kinases mediate activation of p38 in response to DNA damage. EMBO J., 2007, vol. 26, no. 8, p. 2005-2014. Go to original source... Go to PubMed...
  113. REGAN, CP., et al. Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 14, p. 9248-9253. Go to original source... Go to PubMed...
  114. RENSHAW, MW. - LEA-CHOU, E. - WANG, JY. Rac is required for v-Abl tyrosine kinase to activate mitogenesis. Curr. Biol., 1996, vol. 6, no. 1, p. 76-83. Go to original source... Go to PubMed...
  115. ROUSSEAU, S., et al. TPL2-mediated activation of ERK1 and ERK2 regulates the processing of pre-TNF alpha in LPS-stimulated macrophages. J. Cell. Sci., 2008, vol. 121, no. 2, p. 149-154. Go to original source... Go to PubMed...
  116. ROUX, PP. - BLENIS, J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev., 2004, vol. 68, no. 2, p. 320-344. Go to original source... Go to PubMed...
  117. SABAPATHY, K., et al. c-Jun NH2-terminal kinase (JNK)1 and JNK2 have similar and stage-dependent roles in regulating T cell apoptosis and proliferation. J. Exp. Med., 2001, vol. 193, no. 3, p. 317-328. Go to original source... Go to PubMed...
  118. SABIO, G., et al. p38gamma regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAS. EMBO J., 2005, vol. 24, no. 6, p. 1134-1145. Go to original source... Go to PubMed...
  119. SAGATA, N. What does Mos do in oocytes and somatic cells? Bioessays, 1997, vol. 19, no. 1, p. 13-21. Go to original source... Go to PubMed...
  120. SEARS, R., et al. Ras enhances Myc protein stability. Mol. Cell, 1999, vol. 3, no. 2, p. 169-179. Go to original source... Go to PubMed...
  121. SEGER, R., et al. Purification and characterization of mitogen-activated protein kinase activator(s) from epidermal growth factor-stimulated A431 cells. J. Biol. Chem., 1992, vol. 267, no. 20, p. 14373-14381. Go to original source...
  122. SHAFMAN, T., et al. Interaction between ATM protein and c-Abl in response to DNA damage. Nature, 1997, vol. 387, no. 6632, p. 520-523. Go to original source... Go to PubMed...
  123. SHAFMAN, TD., et al. Defective induction of stress-activated protein kinase activity in ataxia-telangiectasia cells exposed to ionizing radiation. Cancer Res., 1995, vol. 55, no. 15, p. 3242-3245. Go to PubMed...
  124. SHE, QB. - CHEN, N. - DONG, Z. ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J. Biol. Chem., 2000, vol. 275, no. 27, p. 20444-20449. Go to original source... Go to PubMed...
  125. SCHWECHHEIMER, C., et al. Examining protein stability and its relevance for plant growth and development. Methods Mol. Biol., 2009, vol. 479, p. 147-171. Go to original source... Go to PubMed...
  126. SNOWDEN, AW. - PERKINS, ND. Cell cycle regulation of the transcriptional coactivators p300 and CREB binding protein. Biochem. Pharmacol., 1998, vol. 55, no. 12, p.1947-1954. Go to original source... Go to PubMed...
  127. SOHN, SJ., et al. ERK5 MAPK regulates embryonic angiogenesis and acts as a hypoxia-sensitive repressor of vascular endothelial growth factor expression. J. Biol. Chem., 2002, vol. 277, no. 45, p. 43344-43351. Go to original source... Go to PubMed...
  128. STUART, JR., et al. c-Abl regulates early growth response protein (EGR1) in response to oxidative stress. Oncogene, 2005, vol. 24, no. 55, p. 8085-8092. Go to original source... Go to PubMed...
  129. STUCKI, M., et al. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell. 2005, vol. 123, no. 7, p. 1213-1226. Go to original source... Go to PubMed...
  130. SUN, W., et al. MEKK2 associates with the adapter protein Lad/RIBP and regulates the MEK5-BMK1/ERK5 pathway. J. Biol. Chem., 2001, vol. 276, no. 7, p. 5093-5100. Go to original source... Go to PubMed...
  131. SUNDARAM, MV. RTK/Ras/MAPK signaling. WormBook, 2006, p. 1-19. Go to original source... Go to PubMed...
  132. TAMURA, K., et al. Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell, 2000, vol. 102, no. 2, p. 221-231. Go to original source... Go to PubMed...
  133. TANG, D., et al. ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J. Biol. Chem., 2002, vol. 277, no. 15, p. 12710-12717. Go to original source... Go to PubMed...
  134. TANOUE, T., et al. A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat. Cell. Biol., 2000, vol. 2, no. 2, p. 110-116. Go to original source... Go to PubMed...
  135. THORNTON, SC., et al. Both in vitro and in vivo irradiation are associated with induction of macrophage-derived fibroblast growth factors. Clin. Exp. Immunol., 1996, vol. 103, no. 1, p. 67-73. Go to original source... Go to PubMed...
  136. UZIEL, T., et al. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 2003, vol. 22, no. 20, p. 5612-21. Go to original source... Go to PubMed...
  137. VAN DEN BOSCH, M. - BREE, RT. - LOWNDES, NF. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep., 2003, vol. 4, no. 9, p. 844-849. Go to original source... Go to PubMed...
  138. WANG, S., et al. Regulation of Rb and E2F by signal transduction cascades: divergent effects of JNK1 and p38 kinases. EMBO J., 1999, vol. 18, no. 6, p. 1559-1570. Go to original source... Go to PubMed...
  139. WANG, X., et al. Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest. Mol. Cell. Biol., 2000, vol. 20, no. 13, p. 4543-4552. Go to original source... Go to PubMed...
  140. WANG, X., et al. Targeted deletion of mek5 causes early embryonic death and defects in the extracellular signal-regulated kinase 5/myocyte enhancer factor 2 cell survival pathway. Mol. Cell. Biol., 2005, vol. 25, no. 1, p. 336-345. Go to original source... Go to PubMed...
  141. WANG, Z., et al. The structure of mitogen-activated protein kinase p38 at 2.1-A resolution. Proc. Natl. Acad. Sci. USA, 1997, vol. 94, no. 6, p. 2327-2332. Go to original source... Go to PubMed...
  142. WEI, W., et al. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell, 2005, vol. 8, no. 1, p. 25-33. Go to original source... Go to PubMed...
  143. WEIS, K. Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell, 2003, vol. 112, no. 4, p. 441-451. Go to original source... Go to PubMed...
  144. WESTON, CR., et al. JNK initiates a cytokine cascade that causes Pax2 expression and closure of the optic fissure. Genes. Dev., 2003, vol. 17, no. 10, p. 1271-1280. Go to original source... Go to PubMed...
  145. WILSON, KP., et al. Crystal structure of p38 mitogen-activated protein kinase. J. Biol. Chem., 1996, vol. 271, no. 44, p. 27696-27700. Go to original source... Go to PubMed...
  146. XING, J. - GINTY, DD. - GREENBERG, ME. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science, 1996, vol. 273, no. 5277, p. 959-963. Go to original source... Go to PubMed...
  147. YAMASHITA, M., et al. Ras-ERK MAPK cascade regulates GATA3 stability and Th2 differentiation through ubiquitin-proteasome pathway. J. Biol. Chem., 2005, vol. 280, no. 33, p. 29409-29419. Go to original source... Go to PubMed...
  148. YANG, J., et al. Mekk3 is essential for early embryonic cardiovascular development. Nat. Genet., 2000, vol. 24, no. 3, p. 309-313. Go to original source... Go to PubMed...
  149. YANG, SH. - SHARROCKS, AD. - WHITMARSH, AJ. Transcriptional regulation by the MAP kinase signaling cascades. Gene, 2003, vol. 320, p. 3-21. Go to original source... Go to PubMed...
  150. YANG, SH., et al. Differential targeting of MAP kinases to the ETS-domain transcription factor Elk-1. EMBO J., 1998, vol. 17, no. 6, p. 1740-1749. Go to original source... Go to PubMed...
  151. YANG, SH., et al. The mechanism of phosphorylation-inducible activation of the ETS-domain transcription factor Elk-1. EMBO J., 1999, vol. 18, no. 20, p. 5666-5674. Go to original source... Go to PubMed...
  152. YOU, Z., et al. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol. Cell. Biol. 2005, vol. 25, no. 13, p. 5363-5379. Go to original source... Go to PubMed...
  153. YU, Q. - CIEMERYCH, MA. - SICINSKI, P. Ras and Myc can drive oncogenic cell proliferation through individual D-cyclins. Oncogene, 2005, vol. 24, no. 47, p. 7114-7119. Go to original source... Go to PubMed...
  154. ZHENG, Q., et al. 14-3-3beta binds to big mitogen-activated protein kinase 1 (BMK1/ERK5) and regulates BMK1 function. J. Biol. Chem., 2004, vol. 279, no. 10, p. 8787-8791. Go to original source... Go to PubMed...
  155. ZHOU, G. - BAO, ZQ. - DIXON, JE. Components of a new human protein kinase signal transduction pathway. J. Biol. Chem., 1995, vol. 270, no. 21, p. 12665-12669. Go to original source... Go to PubMed...