VZL 2010, 79(2):64-71

Biodosimetric Methods

Jaroslav Pejchal ORCID...1, Jan Österreicher2, Lenka Zárybnická ORCID...2, Zuzana Šinkorová ORCID...2, Aleš Tichý ORCID...2, Jiřina Vávrová2
1 Univerzita obrany, Fakulta vojenského zdravotnictví, Centrum pokročilých studií, Hradec Králové
2 Univerzita obrany, Fakulta vojenského zdravotnictví, katedra radiobiologie, Hradec Králové

V současné době se biodozimetrie stala rychle se rozvíjejícím oborem radiobiologie. Význam tohoto oboru vzrůstá zejména s jadernými ambicemi Iránu a Korejské lidově demokratické republiky a s nestabilní situací v Pákistánu, kde v případě vítězství Tálibánu by toto radikální hnutí získalo pákistánský jaderný arzenál, a podle slov svých vůdců, by jej neváhalo použít. Biodozimetrie se při takovýchto rozsáhlých užití jaderných zbraní stává důležitým prostředkem hodnotícím rozsah události a tím umožňujícím optimalizaci intervence integrovaného záchranného systému a predikci následků události.
Tento text je přehledem základních biodozimetrických postupů užívaných při řešení radiačních událostí. Hodnocen je význam klinické odpovědi organismu v období prodromální fáze akutní nemoci z ozáření a laboratorní cytologické a cytogenetické vyšetření periferní krve. Text je doplněn o nové poznatky z oblasti molekulární biodozimetrie. Důraz je kladen zejména na praktický aspekt metod.

Keywords: Ionizující záření; Biodozimetrie

Biodosimetry has recently become a quickly developing subject of radiobiology. Its significance has been increasing regarding nuclear ambitions of Iran and Democratic People's Republic of Korea and instable situation in Pakistan, where, if the Taliban wins, the radical movement will be in the possession of Pakistan nuclear arsenal and, according to its leaders, will not hesitate to use it. In the situation of nuclear weapon use, biodosimetry serves as a tool for accident assessment which enables optimization of emergency rescue system responses and prediction of consequences.The text is an overview of basic biodosimetric approaches used in radiation casualty management. The significance of clinical diagnosis based on the assessment of symptoms in prodromal phase of acute radiation sickness and cytological and cytogenetical work-up of peripheral blood is discussed. The text is supplemented with new knowledge in the field of molecular biodosimetry. Emphasis is especially placed on practical aspects.

Keywords: Ionising radiation; Biodosimetry

Received: July 16, 2009; Published: June 1, 2010  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Pejchal, J., Österreicher, J., Zárybnická, L., Šinkorová, Z., Tichý, A., & Vávrová, J. (2010). Biodosimetric Methods. Vojenské Zdravotnické Listy79(2), 64-71
Download citation

References

  1. AMUNDSON, SA. - FORNACE, AJ. Jr. Gene expression profiles for monitoring radiation exposure. Radiat. Prot. Dosimetry, 2001, vol. 97, no. 1, p. 11-16. Go to original source... Go to PubMed...
  2. AMUNDSON, SA., et al. Identification of potential mRNA biomarkers in peripheral blood lymphocytes for human exposure to ionizing radiation. Radiat. Res., 2000, vol. 154, no. 3, p. 342-346. Go to original source... Go to PubMed...
  3. ANDERSON, RE. - SPRENT, J. - MILLER, JF. Radiosensitivity of T and B lymphocytes. I. Effect of irradiation on cell migration. Eur. J. Immunol., 1974, vol. 4, no. 3, p. 199-203. Go to original source... Go to PubMed...
  4. AUGUSTINE, AD., et al. Animal models for radiation injury, protection and therapy. Radiat. Res., 2005, vol. 164, no. 1, p. 100-109. Go to original source... Go to PubMed...
  5. BARANOV, AE., et al. Transplantation of the bone marrow after total body irradiation of the victims after the accident at the Chernobyl atomic power plant. Gematol. Transfuziol., 1989, vol. 34, no. 3, p. 3-16.
  6. BARKER, S., et al. Identification of mammalian proteins cross-linked to DNA by ionizing radiation. J. Biol. Chem., 2005, vol. 280, no. 40, p. 33826-33838. Go to original source... Go to PubMed...
  7. BLAKELY, WF., et al. Overview of low-level radiation exposure assessment: biodosimetry. Mil. Med., 2002, vol. 167, no. 2 (Suppl), p. 20-24. Go to original source...
  8. CORTOPASSI, GA. - ARNHEIM, N. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res., 1990, vol. 18, no. 23, p. 6927-6933. Go to original source... Go to PubMed...
  9. COUNTRYMAN, PI. - HEDDLE, JA. The production of micronuclei from chromosome aberrations in irradiated cultures of human lymphocytes. Mutat. Res., 1976, vol. 41, no. 2/3, p. 321-332. Go to original source... Go to PubMed...
  10. DARROUDI, F., et al. Detection of total- and partial-body irradiation in a monkey model: a comparative study of chromosomal aberration, micronucleus and premature chromosome condensation assays. Int. J. Radiat. Biol., 1998, vol. 74, no. 2, p. 207-215. Go to original source... Go to PubMed...
  11. DESAI, N., et al. Simultaneous measurement of multiple radiation-induced protein expression profiles using the Luminex(TM) system. Adv. Space Res., 2004, vol. 34, no. 6, p. 1362-1367. Go to original source... Go to PubMed...
  12. DRIÁK, D., et al. Expression of phospho-Elk-1 in rat gut after the whole body gamma irradiation. Physiol. Res., 2008, vol. 57, no. 5, p. 753-759. Go to original source... Go to PubMed...
  13. EDWARDS, AA. The use of chromosomal aberrations in human lymphocytes for biological dosimetry. Radiat. Res., 1997, vol. 148, no. 5 (Suppl), p. 39-44. Go to original source...
  14. FLIEDNER, TM. - CRONKITE, EP. - BOND, VP. Pathogenesis and regeneration of radiation induced bone marrow injury, and therapeutic implications. Strahlentherapie, 1962, vol. 51, p. 263-278. Go to original source... Go to PubMed...
  15. FLIEDNER, TM. - NOTHDURFT, W. - STEINBACH, KH. Blood cell changes after radiation exposure as an indicator for hemopoietic stem cell function. Bone Marrow Transplant., 1988, vol. 3, no. 2, p. 77-84. Go to PubMed...
  16. FLIEDNER, TM., et al. Structure and function of bone marrow hemopoiesis: mechanisms of response to ionizing radiation exposure. Cancer Biother. Radiopharm., 2002, vol. 17, no. 4, p. 405-426. Go to original source... Go to PubMed...
  17. FUJIMOTO, K. Final report of dose estimation for three victims of JCO accident. Chiba: Japan, National Institute of Radiological Sciences, 2002.
  18. GANONG, WF. Přehled lékařské fyziologie. Praha, H&H, 1999.
  19. CHAUDHRY, MA. Biomarkers for human radiation exposure. J. Biomed. Sci., 2008, vol. 15, no. 5, p. 557-563. Go to original source... Go to PubMed...
  20. International Atomic Energy Agency. Biological dosimetry: chromosomal aberration analysis for dose assessment. Technical reports series no. 405. Vienna, IAEA, 2001.
  21. JOHNSON, NF., et al. DNA damage-inducible genes as biomarkers for exposures to environmental agents. Environ. Health Perspect., 1997, vol. 105, no. 4 (Suppl), p. 913-918. Go to original source... Go to PubMed...
  22. KANG, CM., et al. Possible biomarkers for ionizing radiation exposure in human peripheral blood lymphocytes. Radiat. Res., 2003, vol. 159, no. 3, p. 312-319. Go to original source... Go to PubMed...
  23. KUBOTA, N., et al. Induction of a particular deletion in mitochondrial DNA by X rays depends on the inherent radiosensitivity of the cells. Radiat. Res., 1997, vol. 148, no. 4, p. 395-398. Go to original source... Go to PubMed...
  24. KUROSE, A., et al. Effects of hydroxyurea and aphidicolin on phosphorylation of ataxia telangiectasia mutated on Ser 1981 and histone H2AX on Ser 139 in relation to cell cycle phase and induction of apoptosis. Cytometry A., 2006, vol. 69, no. 4, p. 212-221. Go to original source... Go to PubMed...
  25. LEMOINE, FJ. - MARRIOTT, SJ. Genomic instability driven by the human T-cell leukemia virus type I (HTLV-I) oncoprotein. Tax. Oncogene, 2002, vol. 21, no. 47, p. 7230-7234. Go to original source... Go to PubMed...
  26. LLOYD, DC. - PROSSER, JS. - PURROTT, RJ. The study of chromosome aberration yield in human lymphocytes as an indicator of radiation dose. Report NRPB-M70, National radiological protection board, 1992.
  27. LUTGENS, LC. - LAMBIN, P. Biomarkers for radiation-induced small bowel epithelial damage: an emerging role for plasma Citrulline. World J. Gastroenterol., 2007, vol. 13, no. 22, p. 3033-3042. Go to original source... Go to PubMed...
  28. LUTGENS, LC., et al. Citrulline: a physiologic marker enabling quantitation and monitoring of epithelial radiation-induced small bowel damage. Int. J. Radiat. Oncol. Biol. Phys., 2003, vol. 57, no. 4, p. 1067-1074. Go to original source... Go to PubMed...
  29. MAL'TSEV, VN., et al. The individual prognosis of the gravity and of the outcome of acute radiation disease based on immunological indexes. Radiats. Biol. Radioecol., 2006, vol. 46, no. 2, p. 152-158. Go to PubMed...
  30. NEUMANN, HA. - LÖHR, GW. - FAUSER, AA. Radiation sensitivity of pluripotent hemopoietic progenitors (CFUGEMM) derived from human bone marrow. Exp. Hematol., 1981, vol. 9, no. 7, p. 742-744. Go to PubMed...
  31. NOTHDURFT, W., et al. Acute and long-term alterations in the granulocyte/macrophage progenitor cell (GM-CFC) compartment of dogs after partial-body irradiation: irradiation of the upper body with a single myeloablative dose. Int. J. Radiat. Oncol. Biol. Phys., 1986, vol. 12, no. 6, p. 949-957. Go to original source... Go to PubMed...
  32. OKUNIEFF, P., et al. Molecular markers of radiation-related normal tissue toxicity. Cancer Metastasis Rev., 2008, vol. 27, no. 3, p. 363-374. Go to original source... Go to PubMed...
  33. PARK, WY., et al. Identification of radiation-specific responses from gene expression profile. Oncogene, 2002, vol. 21, no. 55, p. 8521-8528. Go to original source... Go to PubMed...
  34. PEJCHAL, J. - ÖSTERREICHER, J. - VÁVROVÁ, J. Biodozimetrie: dicentrická analýza a předčasná chromozomová kondenzace (PCC). Voj. zdrav. Listy, 2007, roč. 76, č. 3, s. 95-104.
  35. PEJCHAL, J. Technical arrangement TA7. Final Report. Hradec Králové, FVZ UO, 2006.
  36. POVYŠIL, C., et al. Speciální patologie. I. díl. Praha, Karolinum, 1995.
  37. PRASANNA, PG., et al. Biological dosimetry using human interphase peripheral blood lymphocytes. Mil. Med., 2002, vol. 167, no. 2 (Suppl), p. 10-12. Go to original source...
  38. ROBERTS, JJ. - KOTSAKI-KOVATSI, VP. Potentiation of sulphur mustard or cisplatin-induced toxicity by caffeine in Chinese hamster cells correlates with formation of DNA double-strand breaks during replication on a damaged template. Mutat. Res., 1986, vol. 165, no. 3, p. 207-220. Go to original source... Go to PubMed...
  39. ROGAKOU, EP., et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem., 1998, vol. 273, no. 10, p. 5858-5868. Go to original source... Go to PubMed...
  40. ŘEHÁKOVÁ, Z., et al. CD27(+) peripheral blood B-cells are a useful biodosimetric marker in vitro. Physiol. Res., 2008, vol. 57, no. 4, p. 589-600. Go to original source... Go to PubMed...
  41. SINE, RC., et al. Biodosimety Assessment Tool: a post-exposure software application for management of radiation accidents. Mil. Med., 2001, vol. 166, no. 12 (Suppl), p. 85-87. Go to original source...
  42. SORTIBRÁN, AN. - TÉLLEZ, MG. - RODRÍGUEZ-ARNAIZ, R. Genotoxic profile of inhibitors of topoisomerases I (camptothecin) and II (etoposide) in a mitotic recombination and sex-chromosome loss somatic eye assay of Drosophila melanogaster. Mutat. Res., 2006, vol. 604, no. 1-2, p. 83-90. Go to original source... Go to PubMed...
  43. STRAUME, T., et al. Molecular and cellular biology of moderate-dose (1-10 Gy) radiation and potential mechanisms of radiation protection: report of a workshop at Bethesda, Maryland, December 17-18, 2001. Radiat. Res., 2003, vol. 159, no. 6, p. 812-834. Go to original source... Go to PubMed...
  44. STRAUME, T., et al. NASA Radiation Biomarker Workshop, September 27-28, 2007. Radiat. Res., 2008, vol. 170, no. 3, p. 393-405. Go to original source... Go to PubMed...
  45. SZEPESI, T. - FLIEDNER, TM. Reversible and irreversible damage to hematopoiesis following unexpected whole body irradiation: markers in peripheral blood. Wien Klin. Wochenschr., 1989, vol. 101, no. 9, p. 309-314. Go to PubMed...
  46. ŠINKOROVÁ, Z., et al. Radiosensitivity of pheripheral blood B cells in pigs. Vet. Med. (Praha), 2009, vol. 54, no. 5, p. 223-235. Go to original source...
  47. TACHIWANA, H., et al. HIV-1 Vpr induces DNA double-strand breaks. Cancer Res., 2006, vol. 66, no. 2, p. 627-31. Go to original source... Go to PubMed...
  48. TURTOI, A., et al. Early gene expression in human lymphocytes after gamma-irradiation-a genetic pattern with potential for biodosimetry. Int. J. Radiat. Biol., 2008, vol. 84, no. 5, p. 375-387. Go to original source... Go to PubMed...
  49. VÁVROVÁ, J., et al. Antiapoptotic cytokine IL-3 + SCF + FLT3L influence on proliferation of gamma-irradiated AC133+/CD34+ progenitor cells. Folia Biol. (Praha), 2002, vol. 48, no. 2, p. 51-57. Go to PubMed...
  50. VILASOVÁ, Z., et al. Changes in phosphorylation of histone H2A.X and p53 in response of peripheral blood lymphocytes to gamma irradiation. Acta Biochim. Pol., 2008, vol. 55, no. 2, p. 381-390. Go to original source... Go to PubMed...