MMSL 2012, 81(1):27-39 | DOI: 10.31482/mmsl.2012.004

INTRACELLULAR PATHOGENESIS OF FRANCISELLA TULARENSISReview article

Adéla Strašková1*, Jiří Stulík ORCID...2
1 Centre of Advanced Studies, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
2 Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic

Intracellular pathogen F. tularensis is a causative agent of tularemia disease and belongs to the most hazardeous pathogen worldwide, categorized by the Center for Disease Control and Prevention, USA (CDC) as a category A agent. However, no safe and licensed vaccine for prevention a F. tularensis infection is available for vaccination. Tularemia is manifested by several forms depending on a route of infection and virulence of a F. tularensis strain. Essential to a development of the disease is the ability to infect, survive and proliferate inside the mononuclear phagocytes, such as macrophages or dendritic cells. Therefore, this review will discuss aspects of F. tularensis intracellular fate within host macrophages, modulate host signaling pathways to benefit Francisella infection and finally, summarize bacterial determinats involved in the process of phagosomal escape and intracellular replication.

Keywords: Francisella tularensis; tularemia; intracellular trafficking; phagosome; intracellular replication; macrophage; Francisella Pathogenicity Island; virulence

Received: February 7, 2012; Revised: February 12, 2012; Published: March 9, 2012  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Strašková, A., & Stulík, J. (2012). INTRACELLULAR PATHOGENESIS OF FRANCISELLA TULARENSIS. MMSL81(1), 27-39. doi: 10.31482/mmsl.2012.004
Download citation

References

  1. McCrumb, F.R. Aerosol Infection of Man with Pasteurella Tularensis. Bacteriol Rev. 1961, 25, 262-267. Go to original source... Go to PubMed...
  2. Saslaw, S., H.T. Eigelsbach, J.A. Prior, H.E. Wilson, and S. Carhart. Tularemia vaccine study. II. Respiratory challenge. Arch Intern Med. 1961, 107, 702-714. Go to original source... Go to PubMed...
  3. Saslaw, S., H.T. Eigelsbach, H.E. Wilson, J.A. Prior, and S. Carhart. Tularemia vaccine study. I. Intracutaneous challenge. Arch Intern Med. 1961, 107, 689-701. Go to original source... Go to PubMed...
  4. Larsson, P., D. Elfsmark, K. Svensson, P. Wikstrom, M. Forsman, T. Brettin, P. Keim, and A. Johansson. Molecular evolutionary consequences of niche restriction in Francisella tularensis, a facultative intracellular pathogen. PLoS Pathog. 2009, 5, e1000472. Go to original source... Go to PubMed...
  5. Johansson, A., J. Farlow, P. Larsson, M. Dukerich, E. Chambers, M. Bystrom, J. Fox, M. Chu, M. Forsman, A. Sjostedt, and P. Keim. Worldwide genetic relationships among Francisella tularensis isolates determined by multiple-locus variable-number tandem repeat analysis. J Bacteriol. 2004, 186, 5808-5818. Go to original source... Go to PubMed...
  6. Keim, P., A. Johansson, and D.M. Wagner. Molecular epidemiology, evolution, and ecology of Francisella. Ann N Y Acad Sci. 2007, 1105, 30-66. Go to original source... Go to PubMed...
  7. Petersen, J.M., P.S. Mead, and M.E. Schriefer. Francisella tularensis: an arthropod-borne pathogen. Vet Res. 2009, 40, 7. Go to original source... Go to PubMed...
  8. Pechous, R.D., T.R. McCarthy, and T.C. Zahrt. Working toward the future: insights into Francisella tularensis pathogenesis and vaccine development. Microbiol Mol Biol Rev. 2009, 73, 684-711. Go to original source... Go to PubMed...
  9. Dennis, D.T., T.V. Inglesby, D.A. Henderson, J.G. Bartlett, M.S. Ascher, E. Eitzen, A.D. Fine, A.M. Friedlander, J. Hauer, M. Layton, S.R. Lillibridge, J.E. McDade, M.T. Osterholm, T. O'Toole, G. Parker, T.M. Perl, P.K. Russell, and K. Tonat. Tularemia as a biological weapon: medical and public health management. Jama. 2001, 285, 2763-2773.
  10. Tarnvik, A. and L. Berglund. Tularaemia. Eur Respir J. 2003, 21, 361-373. Go to original source... Go to PubMed...
  11. Evans, M.E., D.W. Gregory, W. Schaffner, and Z.A. McGee. Tularemia: a 30-year experience with 88 cases. Medicine (Baltimore). 1985, 64, 251-269. Go to original source... Go to PubMed...
  12. Dienst, F.T., Jr. Tularemia: a perusal of three hundred thirty-nine cases. J La State Med Soc. 1963, 115, 114-127. Go to PubMed...
  13. Oyston, P.C., A. Sjostedt, and R.W. Titball. Tularaemia: bioterrorism defence renews interest in Francisella tularensis. Nat Rev Microbiol. 2004, 2, 967-978. Go to original source... Go to PubMed...
  14. Johansson, A., L. Berglund, A. Sjostedt, and A. Tarnvik. Ciprofloxacin for treatment of tularemia. Clin Infect Dis. 2001, 33, 267-268. Go to original source... Go to PubMed...
  15. Russell, P., S.M. Eley, M.J. Fulop, D.L. Bell, and R.W. Titball. The efficacy of ciprofloxacin and doxycycline against experimental tularaemia. J Antimicrob Chemother. 1998, 41, 461-465. Go to original source... Go to PubMed...
  16. Bina, X.R., C. Wang, M.A. Miller, and J.E. Bina. The Bla2 beta-lactamase from the live-vaccine strain of Francisella tularensis encodes a functional protein that is only active against penicillin-class beta-lactam antibiotics. Arch Microbiol. 2006, 186, 219-228. Go to original source... Go to PubMed...
  17. Krocova, Z., A. Hartlova, D. Souckova, L. Zivna, M. Kroca, E. Rudolf, A. Macela, and J. Stulik. Interaction of B cells with intracellular pathogen Francisella tularensis. Microb Pathog. 2008, 45, 79-85. Go to original source... Go to PubMed...
  18. Clemens, D.L., B.Y. Lee, and M.A. Horwitz. Francisella tularensis enters macrophages via a novel process involving pseudopod loops. Infect Immun. 2005, 73, 5892-5902. Go to original source... Go to PubMed...
  19. Pierini, L.M. Uptake of serum-opsonized Francisella tularensis by macrophages can be mediated by class A scavenger receptors. Cell Microbiol. 2006, 8, 1361-1370. Go to original source... Go to PubMed...
  20. Schulert, G.S. and L.A. Allen. Differential infection of mononuclear phagocytes by Francisella tularensis: role of the macrophage mannose receptor. J Leukoc Biol. 2006, 80, 563-571. Go to original source... Go to PubMed...
  21. Barel, M., K. Meibom, and A. Charbit. Nucleolin, a shuttle protein promoting infection of human monocytes by Francisella tularensis. PLoS One. 2010, 5, e14193. Go to original source... Go to PubMed...
  22. Barel, M., A.G. Hovanessian, K. Meibom, J.P. Briand, M. Dupuis, and A. Charbit. A novel receptor - ligand pathway for entry of Francisella tularensis in monocyte-like THP-1 cells: interaction between surface nucleolin and bacterial elongation factor Tu. BMC Microbiol. 2008, 8, 145. Go to original source... Go to PubMed...
  23. Tamilselvam, B. and S. Daefler. Francisella targets cholesterol-rich host cell membrane domains for entry into macrophages. J Immunol. 2008, 180, 8262-8271. Go to original source... Go to PubMed...
  24. Duclos, S. and M. Desjardins. Subversion of a young phagosome: the survival strategies of intracellular pathogens. Cell Microbiol. 2000, 2, 365-377. Go to original source... Go to PubMed...
  25. Flannagan, R.S., G. Cosio, and S. Grinstein. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol. 2009, 7, 355-366. Go to original source... Go to PubMed...
  26. Kahn, R.A., H. Fu, and C.R. Roy. Cellular hijacking: a common strategy for microbial infection. Trends Biochem Sci. 2002, 27, 308-314. Go to original source... Go to PubMed...
  27. Ray, K., B. Marteyn, P.J. Sansonetti, and C.M. Tang. Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat Rev Microbiol. 2009, 7, 333-340. Go to original source... Go to PubMed...
  28. Diacovich, L. and J.P. Gorvel. Bacterial manipulation of innate immunity to promote infection. Nat Rev Microbiol. 2010, 8, 117-128. Go to original source... Go to PubMed...
  29. Bonquist, L., H. Lindgren, I. Golovliov, T. Guina, and A. Sjostedt. MglA and Igl proteins contribute to the modulation of Francisella tularensis live vaccine strain-containing phagosomes in murine macrophages. Infect Immun. 2008, 76, 3502-3510. Go to original source... Go to PubMed...
  30. Clemens, D.L., B.Y. Lee, and M.A. Horwitz. Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect Immun. 2004, 72, 3204-3217. Go to original source... Go to PubMed...
  31. Checroun, C., T.D. Wehrly, E.R. Fischer, S.F. Hayes, and J. Celli. Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci U S A. 2006, 103, 14578-14583. Go to original source... Go to PubMed...
  32. Santic, M., M. Molmeret, and Y. Abu Kwaik. Modulation of biogenesis of the Francisella tularensis subsp. novicida-containing phagosome in quiescent human macrophages and its maturation into a phagolysosome upon activation by IFN-gamma. Cell Microbiol. 2005, 7, 957-967. Go to original source... Go to PubMed...
  33. Santic, M., M. Molmeret, J.R. Barker, K.E. Klose, A. Dekanic, M. Doric, and Y. Abu Kwaik. A Francisella tularensis pathogenicity island protein essential for bacterial proliferation within the host cell cytosol. Cell Microbiol. 2007, 9, 2391-2403. Go to original source... Go to PubMed...
  34. Santic, M., M. Molmeret, K.E. Klose, S. Jones, and Y.A. Kwaik. The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell Microbiol. 2005, 7, 969-979. Go to original source... Go to PubMed...
  35. Golovliov, I., V. Baranov, Z. Krocova, H. Kovarova, and A. Sjostedt. An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect Immun. 2003, 71, 5940-5950. Go to original source... Go to PubMed...
  36. Santic, M., R. Asare, I. Skrobonja, S. Jones, and Y. Abu Kwaik. Acquisition of the vacuolar ATPase proton pump and phagosome acidification are essential for escape of Francisella tularensis into the macrophage cytosol. Infect Immun. 2008, 76, 2671-2677. Go to original source... Go to PubMed...
  37. Chong, A., T.D. Wehrly, V. Nair, E.R. Fischer, J.R. Barker, K.E. Klose, and J. Celli. The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression. Infect Immun. 2008, 76, 5488-5499. Go to original source... Go to PubMed...
  38. Barker, J.R., A. Chong, T.D. Wehrly, J.J. Yu, S.A. Rodriguez, J. Liu, J. Celli, B.P. Arulanandam, and K.E. Klose. The Francisella tularensis pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Mol Microbiol. 2009, 74, 1459-1470. Go to original source... Go to PubMed...
  39. Lai, X.H., I. Golovliov, and A. Sjostedt. Francisella tularensis induces cytopathogenicity and apoptosis in murine macrophages via a mechanism that requires intracellular bacterial multiplication. Infect Immun. 2001, 69, 4691-4694. Go to original source... Go to PubMed...
  40. Hrstka, R., Z. Krocova, J. Cerny, B. Vojtesek, A. Macela, and J. Stulik. Francisella tularensis strain LVS resides in MHC II-positive autophagic vacuoles in macrophages. Folia Microbiol (Praha). 2007, 52, 631-636. Go to original source... Go to PubMed...
  41. Akimana, C., S. Al-Khodor, and Y. Abu Kwaik. Host factors required for modulation of phagosome biogenesis and proliferation of Francisella tularensis within the cytosol. PLoS One. 2010, 5, e11025. Go to original source... Go to PubMed...
  42. Butchar, J.P., T.J. Cremer, C.D. Clay, M.A. Gavrilin, M.D. Wewers, C.B. Marsh, L.S. Schlesinger, and S. Tridandapani. Microarray analysis of human monocytes infected with Francisella tularensis identifies new targets of host response subversion. PLoS One. 2008, 3, e2924. Go to original source... Go to PubMed...
  43. Cremer, T.J., A. Amer, S. Tridandapani, and J.P. Butchar. Francisella tularensis regulates autophagy-related host cell signaling pathways. Autophagy. 2009, 5, 125-128. Go to original source... Go to PubMed...
  44. Asare, R. and Y.A. Kwaik. Exploitation of host cell biology and evasion of immunity by francisella tularensis. Front Microbiol. 2010, 1, 145. Go to PubMed...
  45. Hrstka, R., J. Stulik, and B. Vojtesek. The role of MAPK signal pathways during Francisella tularensis LVS infection-induced apoptosis in murine macrophages. Microbes Infect. 2005, 7, 619-625. Go to original source... Go to PubMed...
  46. Parsa, K.V., J.P. Butchar, M.V. Rajaram, T.J. Cremer, and S. Tridandapani. The tyrosine kinase Syk promotes phagocytosis of Francisella through the activation of Erk. Mol Immunol. 2008, 45, 3012-3021. Go to original source... Go to PubMed...
  47. Cremer, T.J., J.P. Butchar, and S. Tridandapani. Francisella Subverts Innate Immune Signaling: Focus On PI3K/Akt. Front Microbiol. 2011, 2, 13. Go to original source... Go to PubMed...
  48. McCaffrey, R.L. and L.A. Allen. Francisella tularensis LVS evades killing by human neutrophils via inhibition of the respiratory burst and phagosome escape. J Leukoc Biol. 2006, 80, 1224-1230. Go to original source... Go to PubMed...
  49. Parsa, K.V., J.P. Butchar, M.V. Rajaram, T.J. Cremer, J.S. Gunn, L.S. Schlesinger, and S. Tridandapani. Francisella gains a survival advantage within mononuclear phagocytes by suppressing the host IFNgamma response. Mol Immunol. 2008, 45, 3428-3437. Go to original source... Go to PubMed...
  50. Parsa, K.V., L.P. Ganesan, M.V. Rajaram, M.A. Gavrilin, A. Balagopal, N.P. Mohapatra, M.D. Wewers, L.S. Schlesinger, J.S. Gunn, and S. Tridandapani. Macrophage pro-inflammatory response to Francisella novicida infection is regulated by SHIP. PLoS Pathog. 2006, 2, e71. Go to original source... Go to PubMed...
  51. Fernandes-Alnemri, T., J.W. Yu, C. Juliana, L. Solorzano, S. Kang, J. Wu, P. Datta, M. McCormick, L. Huang, E. McDermott, L. Eisenlohr, C.P. Landel, and E.S. Alnemri. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol. 2010, 11, 385-393. Go to original source... Go to PubMed...
  52. Jones, J.W., N. Kayagaki, P. Broz, T. Henry, K. Newton, K. O'Rourke, S. Chan, J. Dong, Y. Qu, M. Roose-Girma, V.M. Dixit, and D.M. Monack. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci U S A. 2010, 107, 9771-9776. Go to original source... Go to PubMed...
  53. Gavrilin, M.A., I.J. Bouakl, N.L. Knatz, M.D. Duncan, M.W. Hall, J.S. Gunn, and M.D. Wewers. Internalization and phagosome escape required for Francisella to induce human monocyte IL-1beta processing and release. Proc Natl Acad Sci U S A. 2006, 103, 141-146. Go to original source... Go to PubMed...
  54. Mariathasan, S., D.S. Weiss, V.M. Dixit, and D.M. Monack. Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J Exp Med. 2005, 202, 1043-1049. Go to original source... Go to PubMed...
  55. Henry, T., A. Brotcke, D.S. Weiss, L.J. Thompson, and D.M. Monack. Type I interferon signaling is required for activation of the inflammasome during Francisella infection. J Exp Med. 2007, 204, 987-994. Go to original source... Go to PubMed...
  56. Nano, F.E., N. Zhang, S.C. Cowley, K.E. Klose, K.K. Cheung, M.J. Roberts, J.S. Ludu, G.W. Letendre, A.I. Meierovics, G. Stephens, and K.L. Elkins. A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol. 2004, 186, 6430-6436. Go to original source... Go to PubMed...
  57. de Bruin, O.M., J.S. Ludu, and F.E. Nano. The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol. 2007, 7, 1. Go to original source... Go to PubMed...
  58. Broms, J.E., M. Lavander, and A. Sjostedt. A conserved alpha-helix essential for a type VI secretion-like system of Francisella tularensis. J Bacteriol. 2009, 191, 2431-2446. Go to original source... Go to PubMed...
  59. Golovliov, I., A. Sjostedt, A. Mokrievich, and V. Pavlov. A method for allelic replacement in Francisella tularensis. FEMS Microbiol Lett. 2003, 222, 273-280. Go to original source... Go to PubMed...
  60. Straskova, A., L. Cerveny, P. Spidlova, V. Dankova, D. Belcic, M. Santic, and J. Stulik. Deletion of IglH in virulent Francisella tularensis subsp. holarctica FSC200 strain results in attenuation and provides protection against the challenge with the parental strain. Microbes Infect. 2012, 14, 177-187. Go to original source... Go to PubMed...
  61. Broms, J.E., M. Lavander, L. Meyer, and A. Sjostedt. IglG and IglI of the Francisella pathogenicity island are important virulence determinants of Francisella tularensis LVS. Infect Immun. 2011, 79, 3683-3696. Go to original source... Go to PubMed...
  62. Schmerk, C.L., B.N. Duplantis, P.L. Howard, and F.E. Nano. A Francisella novicida pdpA mutant exhibits limited intracellular replication and remains associated with the lysosomal marker LAMP-1. Microbiology. 2009, 155, 1498-1504. Go to original source... Go to PubMed...
  63. Brotcke, A., D.S. Weiss, C.C. Kim, P. Chain, S. Malfatti, E. Garcia, and D.M. Monack. Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis. Infect Immun. 2006, 74, 6642-6655. Go to original source... Go to PubMed...
  64. Ludu, J.S., O.M. de Bruin, B.N. Duplantis, C.L. Schmerk, A.Y. Chou, K.L. Elkins, and F.E. Nano. The Francisella pathogenicity island protein PdpD is required for full virulence and associates with homologues of the type VI secretion system. J Bacteriol. 2008, 190, 4584-4595. Go to original source... Go to PubMed...
  65. Wehrly, T.D., A. Chong, K. Virtaneva, D.E. Sturdevant, R. Child, J.A. Edwards, D. Brouwer, V. Nair, E.R. Fischer, L. Wicke, A.J. Curda, J.J. Kupko, 3rd, C. Martens, D.D. Crane, C.M. Bosio, S.F. Porcella, and J. Celli. Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages. Cell Microbiol. 2009, 11, 1128-1150. Go to original source... Go to PubMed...
  66. Baron, G.S. and F.E. Nano. MglA and MglB are required for the intramacrophage growth of Francisella novicida. Mol Microbiol. 1998, 29, 247-259. Go to original source... Go to PubMed...
  67. Mohapatra, N.P., S. Soni, B.L. Bell, R. Warren, R.K. Ernst, A. Muszynski, R.W. Carlson, and J.S. Gunn. Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes. Infect Immun. 2007, 75, 3305-3314. Go to original source... Go to PubMed...
  68. Buchan, B.W., R.L. McCaffrey, S.R. Lindemann, L.A. Allen, and B.D. Jones. Identification of migR, a regulatory element of the Francisella tularensis live vaccine strain iglABCD virulence operon required for normal replication and trafficking in macrophages. Infect Immun. 2009, 77, 2517-2529. Go to original source... Go to PubMed...
  69. Meibom, K.L., A.L. Forslund, K. Kuoppa, K. Alkhuder, I. Dubail, M. Dupuis, A. Forsberg, and A. Charbit. Hfq, a novel pleiotropic regulator of virulence-associated genes in Francisella tularensis. Infect Immun. 2009, 77, 1866-1880. Go to original source... Go to PubMed...
  70. Brotcke, A. and D.M. Monack. Identification of fevR, a novel regulator of virulence gene expression in Francisella novicida. Infect Immun. 2008, 76, 3473-3480. Go to original source... Go to PubMed...
  71. Bell, B.L., N.P. Mohapatra, and J.S. Gunn. Regulation of virulence gene transcripts by the Francisella novicida orphan response regulator PmrA: role of phosphorylation and evidence of MglA/SspA interaction. Infect Immun. 2010, 78, 2189-2198. Go to original source... Go to PubMed...
  72. Qin, A. and B.J. Mann. Identification of transposon insertion mutants of Francisella tularensis tularensis strain Schu S4 deficient in intracellular replication in the hepatic cell line HepG2. BMC Microbiol. 2006, 6, 69. Go to original source... Go to PubMed...
  73. Pechous, R., J. Celli, R. Penoske, S.F. Hayes, D.W. Frank, and T.C. Zahrt. Construction and characterization of an attenuated purine auxotroph in a Francisella tularensis live vaccine strain. Infect Immun. 2006, 74, 4452-4461. Go to original source... Go to PubMed...
  74. Pechous, R.D., T.R. McCarthy, N.P. Mohapatra, S. Soni, R.M. Penoske, N.H. Salzman, D.W. Frank, J.S. Gunn, and T.C. Zahrt. A Francisella tularensis Schu S4 purine auxotroph is highly attenuated in mice but offers limited protection against homologous intranasal challenge. PLoS One. 2008, 3, e2487. Go to original source... Go to PubMed...
  75. Quarry, J.E., K.E. Isherwood, S.L. Michell, H. Diaper, R.W. Titball, and P.C. Oyston. A Francisella tularensis subspecies novicida purF mutant, but not a purA mutant, induces protective immunity to tularemia in mice. Vaccine. 2007, 25, 2011-2018. Go to original source... Go to PubMed...
  76. Schulert, G.S., R.L. McCaffrey, B.W. Buchan, S.R. Lindemann, C. Hollenback, B.D. Jones, and L.A. Allen. Francisella tularensis genes required for inhibition of the neutrophil respiratory burst and intramacrophage growth identified by random transposon mutagenesis of strain LVS. Infect Immun. 2009, 77, 1324-1336. Go to original source... Go to PubMed...
  77. Alkhuder, K., K.L. Meibom, I. Dubail, M. Dupuis, and A. Charbit. Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis. PLoS Pathog. 2009, 5, e1000284. Go to original source... Go to PubMed...
  78. Inaba, K., S. Murakami, M. Suzuki, A. Nakagawa, E. Yamashita, K. Okada, and K. Ito. Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Cell. 2006, 127, 789-801. Go to original source... Go to PubMed...
  79. Meibom, K.L., I. Dubail, M. Dupuis, M. Barel, J. Lenco, J. Stulik, I. Golovliov, A. Sjostedt, and A. Charbit. The heat-shock protein ClpB of Francisella tularensis is involved in stress tolerance and is required for multiplication in target organs of infected mice. Mol Microbiol. 2008, 67, 1384-1401. Go to original source... Go to PubMed...
  80. Su, J., J. Yang, D. Zhao, T.H. Kawula, J.A. Banas, and J.R. Zhang. Genome-wide identification of Francisella tularensis virulence determinants. Infect Immun. 2007, 75, 3089-3101. Go to original source... Go to PubMed...
  81. Qin, A., D.W. Scott, J.A. Thompson, and B.J. Mann. Identification of an essential Francisella tularensis subsp. tularensis virulence factor. Infect Immun. 2009, 77, 152-161. Go to original source... Go to PubMed...
  82. Straskova, A., I. Pavkova, M. Link, A.L. Forslund, K. Kuoppa, L. Noppa, M. Kroca, A. Fucikova, J. Klimentova, Z. Krocova, A. Forsberg, and J. Stulik. Proteome analysis of an attenuated Francisella tularensis dsbA mutant: identification of potential DsbA substrate proteins. J Proteome Res. 2009, 8, 5336-5346. Go to original source... Go to PubMed...
  83. Qin, A., D.W. Scott, and B.J. Mann. Francisella tularensis subsp. tularensis Schu S4 disulfide bond formation protein B, but not an RND-type efflux pump, is required for virulence. Infect Immun. 2008, 76, 3086-3092. Go to original source... Go to PubMed...
  84. Tempel, R., X.H. Lai, L. Crosa, B. Kozlowicz, and F. Heffron. Attenuated Francisella novicida transposon mutants protect mice against wild-type challenge. Infect Immun. 2006, 74, 5095-5105. Go to original source... Go to PubMed...
  85. Kraemer, P.S., A. Mitchell, M.R. Pelletier, L.A. Gallagher, M. Wasnick, L. Rohmer, M.J. Brittnacher, C. Manoil, S.J. Skerett, and N.R. Salama. Genome-wide screen in Francisella novicida for genes required for pulmonary and systemic infection in mice. Infect Immun. 2009, 77, 232-244. Go to original source... Go to PubMed...
  86. Weiss, D.S., A. Brotcke, T. Henry, J.J. Margolis, K. Chan, and D.M. Monack. In vivo negative selection screen identifies genes required for Francisella virulence. Proc Natl Acad Sci U S A. 2007, 104, 6037-6042. Go to original source... Go to PubMed...
  87. Reilly, T.J., G.S. Baron, F.E. Nano, and M.S. Kuhlenschmidt. Characterization and sequencing of a respiratory burst-inhibiting acid phosphatase from Francisella tularensis. J Biol Chem. 1996, 271, 10973-10983. Go to original source... Go to PubMed...
  88. Mohapatra, N.P., A. Balagopal, S. Soni, L.S. Schlesinger, and J.S. Gunn. AcpA is a Francisella acid phosphatase that affects intramacrophage survival and virulence. Infect Immun. 2007, 75, 390-396. Go to original source... Go to PubMed...
  89. Mohapatra, N.P., S. Soni, T.J. Reilly, J. Liu, K.E. Klose, and J.S. Gunn. Combined deletion of four Francisella novicida acid phosphatases attenuates virulence and macrophage vacuolar escape. Infect Immun. 2008, 76, 3690-3699. Go to original source... Go to PubMed...
  90. Felts, R.L., T.J. Reilly, and J.J. Tanner. Crystallization of AcpA, a respiratory burst-inhibiting acid phosphatase from Francisella tularensis. Biochim Biophys Acta. 2005, 1752, 107-110. Go to original source... Go to PubMed...
  91. Felts, R.L., T.J. Reilly, and J.J. Tanner. Structure of Francisella tularensis AcpA: prototype of a unique superfamily of acid phosphatases and phospholipases C. J Biol Chem. 2006, 281, 30289-30298. Go to original source... Go to PubMed...
  92. Dai, S., N.P. Mohapatra, L.S. Schlesinger, and J.S. Gunn. The acid phosphatase AcpA is secreted in vitro and in macrophages by Francisella spp. Infect Immun. 2011, doi:10.1128/IAI.06245-11. Go to original source... Go to PubMed...