MMSL 2014, 83(4):178-182 | DOI: 10.31482/mmsl.2014.028
POLYMER THERAPEUTICS FOR TREATMENT OF VIRAL INFECTIONS SUCH AS EBOLA - HOW TO TEACH NEW TRICKS TO AN OLD DOG? A HYPOTHESIS.Short communication
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
Polymer drug delivery systems were during last few decades proven to be efficient potential therapeutics for cancer treatment, especilly for the treatment of solid tumors, where they may take advantage of the Enhanced Permeability and Retention (EPR) effect for tumor-specific passive accumulation. Controlled release of anticancer drugs in cancer cells may be triggered by. e.g., cathepsin B activation after endocytosis. Endosomal proteases, especially cathepsins B and L, are known to be one of the key factors influencing some viral infections. For instance Ebola virus requires partial proteolysis of its surface glycoprotein for efficient endosome escape within its life cycle. We hypothesize that polymeric cathepsin B and L inhibitors may utilize advantages of polymer delivery systems for more effective treatment of viral infections with cathepsin inhibitors reducing systemic toxicity and increasing efficacy by targeted delivery of these inhibitors.
Keywords: Ebola virus; cathepsin; polymer; inhibitor
Received: November 22, 2014; Revised: December 3, 2014; Published: December 5, 2014 Show citation
References
- Fajardo-Ortiz, D.; Duran, L.; Moreno, L.; Ochoa, H.; Castano, VM. Mapping knowledge translation and innovation processes in Cancer Drug Development: the case of liposomal doxorubicin. J. Transl. Med. 2014, 12, article # 227.
Go to original source...
Go to PubMed...
- Sengupta, S. Clinical translational challenges in nanomedicine. MRS Bull. 2014, 39, 259-264.
Go to original source...
- Svenson, S. What nanomedicine in the clinic right now really forms nanoparticles? Wiley Interdiscipl. Rev. Nanomed. Nanobiotechnol. 2014, 6, 125-135.
Go to original source...
Go to PubMed...
- Kopecek, J. Polymer-drug conjugates: Origins, progress to date and future directions. Adv. Drug Delivery Rev. 2013, 65, 49-59.
Go to original source...
Go to PubMed...
- Kissel, M.; Peschke, P.; Subr, V.; Ulbrich, K.; Schuhmacher, J.; Debus, J.; Friedrich, E. Synthetic macromolecular drug carriers: Biodistribution of poly[N-(2-hydroxypropyl) methacrylamide] copolymers and their accumulation in solid rat tumors. PDA J. Pharm. Sci. Technol. 2001, 55, 191-201.
- Prantner, AM.; Scholler, N. Biological Barriers and Current Strategies for Modifying Nanoparticle Bioavailability. J. Nanosci. Nanotechnol. 2014, 14, 115-125.
Go to original source...
Go to PubMed...
- Baker, DW.; Zhou, J.; Tsai, YT.; Patty, KM.; Weng, H.; Tang, EN.; Nair, A.; Hu, WJ.; Tang, LP. Development of optical probes for in vivo imaging of polarized macrophages during foreign body reactions. Acta Biomaterialia. 2014, 10, 2945-2955.
Go to original source...
Go to PubMed...
- Haddadi, A.; Hamdy, S.; Ghotbi, Z.; Samuel, J.; Lavasanifar, A. Immunoadjuvant activity of the nanoparticles' surface modified with mannan. Nanotechnology. 2014, 25, article # 355101.
Go to original source...
Go to PubMed...
- Chaubey, P.; Patel, RR.; Mishra, B. Development and optimization of curcumin-loaded mannosylated chitosan nanoparticles using response surface methodology in the treatment of visceral leishmaniasis. Expert Opinion Drug Delivery. 2014, 11, 1163-1181.
- Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Delivery Rev. 2013, 65, 71-79.
Go to original source...
Go to PubMed...
- Egawa, G.; Nakamizo, S.; Natsuaki, Y.; Doi, H.; Miyachi, Y.; Kabashima, K. Intravital analysis of vascular permeability in mice using two-photon microscopy. Sci. Rep. 2013, 3, article # 1932.
Go to original source...
Go to PubMed...
- Liu, J.; Huang, YR.; Kumar, A.; Tan, A.; Jin, SB.; Mozhi, A.; Liang, XJ. pH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv. 2014, 32, 693-710.
Go to original source...
Go to PubMed...
- Etrych, T.; Strohalm, J.; Chytil, P.; Cernoch, P.; Starovoytova, L.; Pechar, M.; Ulbrich, K. Biodegradable star HPMA polymer conjugates of doxorubicin for passive tumor targeting. Eur. J. Pharm. Sci. 2011, 42, 527-539.
Go to original source...
Go to PubMed...
- Rejmanova, P.; Kopecek, J.; Pohl, J.; Baudys, M.; Kostka, V. Polymers containing enzymatically degradable bonds. 8. Degradation of oligopeptide sequences in N-(2-hydroxypropyl)methacrylamide co-polymers by bovine spleen cathepsin-B. Macromol. Chem. Phys. 1983, 184, 2009-2020.
Go to original source...
- Zhang, CY.; Pan, DY.; Luo, K.; She, WC.; Guo, CH.; Yang, Y.; Gu, ZW. Peptide Dendrimer-Doxorubicin Conjugate-Based Nanoparticles as an Enzyme-Responsive Drug Delivery System for Cancer Therapy. Adv. Healthc. Mater. 2014, 3, 1299-1308.
Go to original source...
Go to PubMed...
- Misasi, J.; Chandran, K.; Yang, J. Y.; Considine, B.; Filone, CM.; Cote, M.; Sullivan, N.; Fabozzi, G.; Hensley, L.; Cunningham, J. Filoviruses Require Endosomal Cysteine Proteases for Entry but Exhibit Distinct Protease Preferences. J. Virol. 2012, 86, 3284-3292.
Go to original source...
Go to PubMed...
- Gnirss, K.; Kuhl, A.; Karsten, C.; Glowacka, I.; Bertram, S.; Kaup, F.; Hofmann, H.; Pohlmann, S. Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression. Virology. 2012, 424, 3-10.
Go to original source...
Go to PubMed...
- Hunt, CL.; Lennemann, NJ.; Maury, W. Filovirus Entry: A Novelty in the Viral Fusion World. Viruses-Basel. 2012, 4, 258-275.
Go to original source...
Go to PubMed...
- Brecher, M.; Schornberg, KL.; Delos, SE.; Fusco, ML.; Saphire, EO.; White, JM. Cathepsin Cleavage Potentiates the Ebola Virus Glycoprotein To Undergo a Subsequent Fusion-Relevant Conformational Change. J. Virol. 2012, 86, 364-372.
Go to original source...
Go to PubMed...
- Barrientos, LG.; Rollin, PE. Release of cellular proteases into the acidic extracellular milieu exacerbates Ebola virus-induced cell damage. Virology. 2007, 358, 1-9.
Go to original source...
Go to PubMed...
- Shivanna, V.; Kim, Y.; Chang, KO. Endosomal acidification and cathepsin L activity is required for calicivirus replication. Virology. 2014, 464, 287-295.
Go to original source...
Go to PubMed...
- Matsuyama, S.; Taguchi, F. Two-Step Conformational Changes in a Coronavirus Envelope Glycoprotein Mediated by Receptor Binding and Proteolysis. J. Virol. 2009, 83, 11133-11141.
Go to original source...
Go to PubMed...
- Elshabrawy, HA.; Fan, JL.; Haddad, CS.; Ratia, K.; Broder, CC.; Caffrey, M.; Prabhakar, BS. Identification of a Broad-Spectrum Antiviral Small Molecule against Severe Acute Respiratory Syndrome Coronavirus and Ebola, Hendra, and Nipah Viruses by Using a Novel High-Throughput Screening Assay. J. Virol. 2014, 88, 4353-4365.
Go to original source...
Go to PubMed...
- Prabhakar, BS; Elshabrawy, HA. Use of compound selected from substituted triazine compound, substituted 1,3-diphenyl-urea compound or substituted heterocyclic compound for inhibiting viral infection e.g. Ebola virus infection in a mammal. WO2013152223-A2, 2013.
- Shah, PP.; Wang, TH.; Kaletsky, RL.; Myers, MC.; Purvis, JE.; Jing, HY.; Huryn, DM.; Greenbaum, DC.; Smith, AB.; Bates, P.; Diamond, SL. A Small-Molecule Oxocarbazate Inhibitor of Human Cathepsin L Blocks Severe Acute Respiratory Syndrome and Ebola Pseudotype Virus Infection into Human Embryonic Kidney 293T cells. Mol. Pharmacol. 2010, 78, 319-324.
Go to original source...
Go to PubMed...
- Frizler, M.; Stirnberg, M.; Sisay, MT.; Gutschow, M. Development of Nitrile-Based Peptidic Inhibitors of Cysteine Cathepsins. Curr. Top. Med. Chem. 2010, 10, 294-322.
Go to original source...
Go to PubMed...
- Huryn, DM.; Smith, AB., The Identification, Characterization and Optimization of Small Molecule Probes of Cysteine Proteases: Experiences of the Penn Center for Molecular Discovery with Cathepsin B and Cathepsin L. Curr. Top. Med. Chem. 2009, 9, 1206-1216.
Go to original source...
Go to PubMed...
- Myers, MC.; Shah, PP.; Beavers, MP.; Napper, AD.; Diamond, SL.; Smith, AB.; Huryn, DM. Design, synthesis, and evaluation of inhibitors of cathepsin L: Exploiting a unique thiocarbazate chemotype. Bioorg. Med. Chem. Lett. 2008, 18, 3646-3651.
Go to original source...
Go to PubMed...
- Shah, PP.; Myers, MC.; Beavers, MP.; Purvis, JE.; Jing, H.; Grieser, HJ.; Sharlow, ER.; Napper, AD.; Huryn, DM.; Cooperman, BS.; Smith, AB.; Diamond, SL. Kinetic characterization and molecular docking of a novel, potent, and selective slow-binding inhibitor of human cathepsin L. Mol. Pharmacol. 2008, 74, 34-41.
Go to original source...
Go to PubMed...
- Barua, S.; Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today. 2014, 9, 223-243.
Go to original source...
Go to PubMed...
- Mahmoudi, M.; Meng, J.; Xue, X.; Liang, XJ.; Rahman, M.; Pfeiffer, C.; Hartmann, R.; Gil, PR.; Pelaz, B.; Parak, WJ.; del Pino, P.; Carregal-Romero, S.; Kanaras, AG.; Selvan, ST. Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnol. Adv. 2014, 32, 679-692.
Go to original source...
Go to PubMed...
- Wang, D.; Li, W.; Pechar, M.; Kopeckova, P.; Bromme, D.; Kopecek, J. Cathepsin K inhibitor-polymer conjugates: potential drugs for the treatment of osteoporosis and rheumatoid arthritis. Int. J. Pharm. 2004, 277, 73-79.
Go to original source...
Go to PubMed...