MMSL 2020, 89(2):80-89 | DOI: 10.31482/mmsl.2019.022

INFLUENCE OF IONIZING RADIATION ON DEVELOPMENT OF THYMUS AND THYMOCYTESReview article

Markéta Němcová ORCID...*, Anna Lierová ORCID..., Lenka Andrejsová ORCID..., Marcela Jeličová ORCID..., Zuzana Šinkorová ORCID...
Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Hradec Králové, Czech Republic

Purpose: Among other reasons, the deteriorating global security situation and dangers associated with nuclear weapons have increased the need for deeper knowledge of the basic mechanisms involving the human immune system and ionizing radiation (IR). We conducted a review as to the effects of IR on thymic tissue, and particularly on the development of thymocytes and the T lymphocytes population in peripheral blood.Existing knowledge on this topic is based in part on national registers that store records concerning irradiated people. The majority of studies in this area, however, are based on experimental animal models. The main open question in this subject area regards the delayed effects of IR on thymus tissue, development of thymocytes, and subsequent impact on the immune system. Findings acquired to date on effects of IR are contributing to emerging fields such as immunotherapy, the objective of which is to support or activate natural immunity response.

Methods: Recent research articles were reviewed regarding the influence of IR on thymus tissue and thymocytes development.

Results: Differentiation and proliferation of thymocytes constitute a complex and sensitive process that is partially altered after irradiation, as are, too, the mechanisms for movement of early (derived from bone marrow) and derived (thymus derivatives) precursors. Disruption of these processes may lead to alteration of immune system function.

Conclusions: Low doses (<200 mGy) may lead to changes in or disruption of functions of the thymus, thymocytes, and mechanisms of the immune system. The extent of IR’s influence is dependent not only on the individual’s radiosensitivity but also on his or her sex and age. With increasing absorbed IR dose, the risk of damage to thymus tissue and thymocytes in the organism rises and the extent of damage increases.

Keywords: irradiation; immune system; thymus; T lymphocytes

Received: June 19, 2019; Accepted: October 21, 2019; Prepublished online: February 13, 2020; Published: June 5, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Němcová, M., Lierová, A., Andrejsová, L., Jeličová, M., & Šinkorová, Z. (2020). INFLUENCE OF IONIZING RADIATION ON DEVELOPMENT OF THYMUS AND THYMOCYTES. MMSL89(2), 80-89. doi: 10.31482/mmsl.2019.022
Download citation

References

  1. Mabuchi K, Soda M, Ron E, Tokunaga M, Ochikubo S, Sugimoto S, et al. CANCER INCIDENCE IN ATOMIC-BOMB SURVIVORS .1. USE OF THE TUMOR REGISTRIES IN HIROSHIMA AND NAGASAKI FOR INCIDENCE STUDIES. Radiation Research. 1994;137(2):S1-S16. Go to original source... Go to PubMed...
  2. The State Office for Nuclear Safety. Annual report SÚJB 1996 [internet]. Prague: SÚJB; 1. 8. 2019. Available from: https://www.sujb.cz/fileadmin/sujb/docs/zpravy/vyrocni_zpravy/ceske/SUJB_Rocni_Zprava_1996.pdf. Czech.
  3. Government Order No. 290/1995 Coll., Annex List of Occupational Diseases 15 November 1995. Czech.
  4. Waselenko JK, MacVittie TJ, Blakely WF, Pesik N, Wiley AL, Dickerson WE, et al. Medical management of the acute radiation syndrome: Recommendations of the Strategic National Stockpile Radiation Working Group. Annals of Internal Medicine. 2004;140(12):1037-51. Go to original source... Go to PubMed...
  5. UNSCEAR. Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR Report to the General Assembly with Scientific Annexes, Vol. II, Annex J: Exposure and Effects of the Chernobyl Accident, United Nations, New York; 2000.
  6. Lydyard P, Whelan A, Fanger M. BIOS Instant Notes in Immunology. Taylor & Francis Ltd, London; 2004. Go to original source...
  7. Laštovička J. T Lymfocyty [internet]. Available from: https://docplayer.cz/30940698-T-lymfocyty-rndr-jan-lastovicka-csc-ustav-imunologie-2-lf-uk-fn-motol.html. Czech.
  8. Orkin SH, Zon LI. Hematopoiesis: An evolving paradigm for stem cell biology. Cell. 2008;132(4):631-44. Go to original source... Go to PubMed...
  9. Seita J, Weissman IL. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdisciplinary Reviews-Systems Biology and Medicine. 2010;2(6):640-53. Go to original source... Go to PubMed...
  10. Slípka J, Tonar Z. Základy histologie. Karolinum. Prague. 2018. Czech.
  11. Takahama Y. Journey through the thymus: stromal guides for T-cell development and selection. Nature Reviews Immunology. 2006;6(2):127-35. Go to original source... Go to PubMed...
  12. Kusunoki Y, Hayashi T, Morishita Y, Yamaoka M, Maki M, Hakoda M, et al. T-cell responses to mitogens in atomic bomb survivors: A decreased capacity to produce interleukin 2 characterizes the T cells of heavily irradiated individuals. Radiation Research. 2001;155(1):81-8. Go to original source... Go to PubMed...
  13. Yarilin AA, Belyakov IM, Kusmenok OI, Arshinov VY, Simonova AV, Nadezhina NM, et al. LATE T-CELL DEFICIENCY IN VICTIMS OF THE CHERNOBYL RADIATION ACCIDENT - POSSIBLE MECHANISMS OF INDUCTION. International Journal of Radiation Biology. 1993;63(4):519-28. Go to original source... Go to PubMed...
  14. Kurjane N, Bruvere R, Shitova O, Romanova T, Jaunalksne I, Kirschfink M, et al. Analysis of the immune status in Latvian Chernobyl clean-up workers with nononcological thyroid diseases. Scandinavian Journal of Immunology. 2001;54(5):528-33. Go to original source... Go to PubMed...
  15. Kuzmenok O, Potapnev M, Potapova S, Smolnikova V, Rzheutsky V, Yarilin AA, et al. Late effects of the Chernobyl radiation accident on T cell-mediated immunity in cleanup workers. Radiation Research. 2003;159(1):109-16. Go to original source... Go to PubMed...
  16. Fliedner TM, Graessle DH, Meineke V, Feinendegen LE. HEMOPOIETIC RESPONSE TO LOW DOSE-RATES OF IONIZING RADIATION SHOWS STEM CELL TOLERANCE AND ADAPTATION. Dose-Response. 2012;10(4):644-63. Go to original source... Go to PubMed...
  17. Fliedner TM, Graessle DH. Hematopoietic cell renewal systems: mechanisms of coping and failing after chronic exposure to ionizing radiation. Radiation and Environmental Biophysics. 2008;47(1):63-9. Go to original source... Go to PubMed...
  18. Kusunoki Y, Kyoizumi S, Hirai Y, Suzuki T, Nakashima E, Kodama K, et al. Flow cytometry measurements of subsets of T, B and NK cells in peripheral blood lymphocytes of atomic bomb survivors. Radiation Research. 1998;150(2):227-36. Go to original source... Go to PubMed...
  19. Kusunoki Y, Hirai Y, Hakoda M, Kyoizumi S. Uneven distributions of naive and memory T cells in the CD4 and CD8 T-cell populations derived from a single stem cell in an atomic bomb survivor: Implications for the origins of the memory T-cell pools in adulthood. Radiation Research. 2002;157(5):493-9. Go to original source... Go to PubMed...
  20. Hayashi T, Kusunoki Y, Hakoda M, Morishita Y, Kubo Y, Maki M, et al. Radiation dose-dependent increases in inflammatory response markers in A-bomb survivors. International Journal of Radiation Biology. 2003;79(2):129-36. Go to original source... Go to PubMed...
  21. Akleyev AV, Akushevich IV, Dimov GP, Veremeyeva GA, Varfolomeyeva TA, Ukraintseva SV, et al. Early hematopoiesis inhibition under chronic radiation exposure in humans. Radiation and Environmental Biophysics. 2010;49(2):281-91. Go to original source... Go to PubMed...
  22. Fliedner TM, Graessle D, Paulsen C, Reimers K. Structure and function of bone marrow hemopoiesis: Mechanisms of response to ionizing radiation exposure. Cancer Biotherapy and Radiopharmaceuticals. 2002;17(4):405-26. Go to original source... Go to PubMed...
  23. World Health Organization (WHO). Health Effects of the Chernobyl Accident and Special Health Care Programmes [internet]. Geneva: WHO; 2006. Available from: https://www.who.int/ionizing_radiation/chernobyl/who_chernobyl_report_2006.pdf
  24. Österreicher J, Vávrová J. Přednášky z radiobiologie, Manus, Hradec Králové; 2003. Czech.
  25. Navrátil L, Österreicher J. KLINICKÁ RADIOBIOLOGIE. KLINICKÉ PROJEVY AKUTNÍ NEMOCI Z OZÁŘENÍ (ANO) [internet]. Jihočeská univerzita v Českých Budějovicích. Available from: https://docplayer.cz/1296440-Klinicka-radiobiologie.html. Czech.
  26. Wagemaker G,Guskova AK, Bebeshko VG, Griffiths NM, Krishenko, NA. Clinically Observed Effects in Individuals Exposed to Radiation as a Result of the Chernobyl Accident, One Decade after Chernobyl: Summing up the Consequences of the Accident. Proceedings of an International Conference. Vienna. 1996:173-196.
  27. Curtis RE, Boice JD, Stovall M, Bernstein L, Greenberg RS, Flannery JT, et al. RISK OF LEUKEMIA AFTER CHEMOTHERAPY AND RADIATION TREATMENT FOR BREAST-CANCER. New England Journal of Medicine. 1992;326(26):1745-51. Go to original source... Go to PubMed...
  28. Hořejší V, Bartůňka J. Základy imunologie. Triton, Prague; 2000. Czech.
  29. Masaryk Memorial Cancer Institute 2016 [internet]. Nádor brzlíku-thymu. Available from: http://www.mou.cz/thymom-brzlik-a-karcinomy-thymu/t3118. Czech.
  30. Junqueira LC, Carneiro J, Kelley RO. Základy histologie. H&H, Prague; 2002. Czech. Go to original source...
  31. Liu CL, Ueno T, Kuse S, Saito F, Nitta T, Piali L, et al. The role of CCL21 in recruitment of T-precursor cells to fetal thymi. Blood. 2005;105(1):31-9. Go to original source... Go to PubMed...
  32. Vyškovský P. Hematopoéza. Bachelor Thesis, Masaryk University, Brno. 2011. Czech.
  33. Haymaker E. Y Antigen recognition by T-cells 2009 [internet]. srequires.com. Available from: https://slideplayer.com/slide/2108744/
  34. Ebert PJR, Ehrlich LIR, Davis MM. Low Ligand Requirement for Deletion and Lack of Synapses in Positive Selection Enforce the Gauntlet of Thymic T Cell Maturation. Immunity. 2008;29(5):734-45. Go to original source... Go to PubMed...
  35. Anderson MS, Su MA. AIRE expands: new roles in immune tolerance and beyond. Nature Reviews Immunology. 2016;16(4):247-58. Go to original source... Go to PubMed...
  36. Ito R, Hale LP, Geyer SM, Li J, Sornborger A, Kajimura J, et al. Late Effects of Exposure to Ionizing Radiation and Age on Human Thymus Morphology and Function. Radiation Research. 2017;187(5):589-98. Go to original source... Go to PubMed...
  37. Xiao SY, Shterev ID, Zhang W, Young LR, Shieh JH, Moore M, et al. Sublethal Total Body Irradiation Causes Long-Term Deficits in Thymus Function by Reducing Lymphoid Progenitors. Journal of Immunology. 2017;199(8):2701-12. Go to original source... Go to PubMed...
  38. Calvo-Asensio I, Barthlott T, von Muenchow L, Lowndes NF, Ceredig R. Differential Response of Mouse Thymic Epithelial Cell Types to Ionizing Radiation-Induced DNA Damage. Frontiers in Immunology. 2017;8. Go to original source... Go to PubMed...
  39. Walker RI. ROLE OF IMMUNOTHERAPY IN PREVENTING AND MANAGING POSTIRRADIATION INFECTIONS. Treatment of Radiation Injuries. 1990:101-7. Go to original source...
  40. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nature Reviews Cancer. 2014;14(2):135-46. Go to original source... Go to PubMed...