MMSL 2021, 90(4):172-190 | DOI: 10.31482/mmsl.2021.018

THE PROTEINS OF SARS- CoV-2 AND THEIR FUNCTIONSReview article

Zohreh Taheri Kangarshahi ORCID...1, Shermin Lak ORCID...2, Mona Ghadam3, Nasrin Motamed ORCID...4*, Sorosh Sardari5*, Samin Rahimi6
1 Department of Genetics, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran, Email: azintaheri7171@yahoo.com
2 National institute of genetic engineering and biotechnology (NIGEB) 14965/161, Tehran, Iran, Email: Sherminlak3@gmail.com
3 National institute of genetic engineering and biotechnology (NIGEB) 14965/161, Tehran, Iran, Email: monaghadam@gmail.com
4 Department of cellular and molecular biology, School of biology, University of Tehran, Tehran, Iran, Email: motamed2@khayam.ut.ac.ir
5 Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran, Email: ssardari@hotmail.com
6 Department of biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran, Email: samin6686@gmail.com

Coronavirus 2 (SARS- CoV-2) leads to Coronavirus disease 2019, is recognized as a lethal epidemic in 2020. SARS-CoV-2 is an enveloped, non-segmented, positive sense RNA virus that belongs to the beta-corona family of viruses. The genome of this virus is about 30 kb representing 16 non-structural proteins (Nsp1-16), four structural proteins (N, M, E, S) and nine accessory proteins are encoded by its genome, which are involved in survival and pathogenesis the viruses. In order to produce medicines and vaccines for SARS-CoV-2, it is essential to fully understand the genomic structure of the virus and function of its proteins. This review collects and investigates the functional properties of SARS-CoV-2 proteins that have been reported to date.

Keywords: SARS- CoV-2; proteins functional; proteins structure

Received: March 12, 2021; Revised: April 21, 2021; Accepted: April 21, 2021; Prepublished online: April 30, 2021; Published: December 3, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kangarshahi, Z.T., Lak, S., Ghadam, M., Motamed, N., Sardari, S., & Rahimi, S. (2021). THE PROTEINS OF SARS- CoV-2 AND THEIR FUNCTIONS. MMSL90(4), 172-190. doi: 10.31482/mmsl.2021.018
Download citation

References

  1. Teuwen LA, Geldhof V, Pasut A, et al. COVID-19: the vasculature unleashed. Nature Reviews Immunology. 2020;20(7):389-391. Go to original source... Go to PubMed...
  2. Lai C C, Shih TP, Ko WC, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International journal of antimicrobial agents. 2020;55(3):105924. Go to original source... Go to PubMed...
  3. Wu Z, McGoogan, JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama. 2020;323(13):1239-1242. Go to original source... Go to PubMed...
  4. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. New England journal of medicine. 2020;382(18):1708-1720. Go to original source... Go to PubMed...
  5. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. Jama. 2020;323(20):2052-2059. Go to original source... Go to PubMed...
  6. Levi M, Thachil J, Iba T, et al. Coagulation abnormalities and thrombosis in patients with COVID-19. The Lancet. Haematology. 2020;7(6):e438. Go to original source... Go to PubMed...
  7. Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of thrombosis and haemostasis. 2020;18(4):844-847. Go to original source... Go to PubMed...
  8. Batra N, De Souza C, Batra J, et al. The HMOX1 Pathway as a Promising Target for the Treatment and Prevention of SARS-CoV-2 of 2019 (COVID-19). International journal of molecular sciences. 2020;21(17):6412. Go to original source... Go to PubMed...
  9. Hassan SS, Choudhury PP, Basu P, et al. Molecular conservation and differential mutation on orf3a gene in indian sars-cov2 genomes. Genomics. 2020;112(5):3226-3237. Go to original source... Go to PubMed...
  10. Zheng J. SARS-CoV-2: an emerging coronavirus that causes a global threat. International journal of biological sciences. 2020;16(10):1678. Go to original source... Go to PubMed...
  11. Helmy YA, Fawzy M, Elaswad A, et al. The COVID-19 pandemic: a comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. Journal of clinical medicine. 2020;9(4):1225. Go to original source... Go to PubMed...
  12. Angeletti S, Benvenuto D, Bianchi M, et al. COVID-2019: the role of the nsp2 and nsp3 in its pathogenesis. Journal of medical virology. 2020;92(6):584-588. Go to original source... Go to PubMed...
  13. Yoshimoto FK. The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. The protein journal. 2020;39:198-216. Go to original source... Go to PubMed...
  14. Konkolova E, Klima M, Nencka R, et al. Structural analysis of the putative SARS-CoV-2 primase complex. Journal of Structural Biology. 2020;211(2):107548. Go to original source... Go to PubMed...
  15. Graham RL, Sparks JS, Eckerle LD, et al. SARS coronavirus replicase proteins in pathogenesis. Virus research. 2008;133(1):88-100. Go to original source... Go to PubMed...
  16. Hoffmann M, Kleine-Weber H, Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. cell. 2020;181(2):271-280. Go to original source... Go to PubMed...
  17. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. The lancet. 2020;395(10229).1033-1034. Go to original source... Go to PubMed...
  18. Schubert K, Karousis ED, Jomaa A, et al. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nature structural & molecular biology. 2020;27(10):959-966. Go to original source... Go to PubMed...
  19. Chandel V, Raj S, Rathi B, et al. In silico identification of potent COVID-19 main protease inhibitors from FDA approved antiviral compounds and active phytochemicals through molecular docking: A drug repurposing approach. 2020;7(3):1 9. Go to original source...
  20. Davies JP, Almasy KM, McDonald EF, et al. (2020). Comparative multiplexed interactomics of SARS-CoV-2 and homologous coronavirus non-structural proteins identifies unique and shared host-cell dependencies. bioRxiv.
  21. Frick DN, Virdi RS, Vuksanovic N, et al. (2020). Molecular Basis for ADP-ribose Binding to the Macro-X Domain of SARS-CoV-2 Nsp3. bioRxiv. Go to original source...
  22. Srinivasan S, Cui H, Gao Z, et al. Structural genomics of SARS-CoV-2 indicates evolutionary conserved functional regions of viral proteins. Viruses. 2020;12(4):360. Go to original source... Go to PubMed...
  23. Zhong B, Zhang Y, Tan B, et al. The E3 ubiquitin ligase RNF5 targets virus-induced signaling adaptor for ubiquitination and degradation. The Journal of Immunology. 2010;184(11):6249-6255. Go to original source... Go to PubMed...
  24. Liu C, Zhou Q, Li Y, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Central Science. 2020;6(3):315-331. Go to original source... Go to PubMed...
  25. Naqvi AAT, Fatima K, Mohammad T, Fatima, et al. (2020). Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 165878. Go to original source...
  26. Elmezayen AD, Al-Obaidi A, Sahin AT., et al. Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure and Dynamics. 2020;38:1-13. https://doi. org/10.1080/07391102.2020.1758791 Go to original source... Go to PubMed...
  27. Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. The Lancet. 2020;395(10223):514-523. Go to original source... Go to PubMed...
  28. Pandey P, Prasad K, Prakash A, et al. Insights into the biased activity of dextromethorphan and haloperidol towards SARS-CoV-2 NSP6: in silico binding mechanistic analysis. Journal of Molecular Medicine. 2020;Sep23:1-15. Go to original source... Go to PubMed...
  29. Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459-468. Go to original source... Go to PubMed...
  30. Zhai Y, Sun F, Li X, et al. Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat. Struct. Mol. Biol. 2005;12:980-986. Go to original source... Go to PubMed...
  31. Kirchdoerfer RN, Ward AB. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat. Commun. 2019;10:2342. Go to original source... Go to PubMed...
  32. Peng Q, Peng R, Yuan B, et al. (2020). Structural and biochemical characterization of nsp12-nsp7-nsp8 core polymerase complex from SARS-CoV-2. Cell Reports, 107774. Go to original source...
  33. Miknis ZJ, Donaldson EF, Umland TC, et al. Severe acute respiratory syndrome coronavirus nsp9 dimerization is essential for efficient viral growth. Journal of virology. 2009;83(7):3007-3018. Go to original source... Go to PubMed...
  34. Rosas-Lemus M, Minasov G, Shuvalova L, et al. High-resolution structures of the SARS-CoV-2 2'-O-methyltransferase reveal strategies for structure-based inhibitor design. Science Signaling. 2020;13(651). Go to original source... Go to PubMed...
  35. Krafcikova P, Silhan J, Nencka R, et al. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nature communications. 2020;11(1):1-7. Go to original source... Go to PubMed...
  36. Ogando NS, Zevenhoven-Dobbe JC, van der Meer Y, et al. The enzymatic activity of the nsp14 exoribonuclease is critical for replication of MERS-CoV and SARS-CoV-2. Journal of virology. 2020;94(23). Go to original source... Go to PubMed...
  37. Hackbart M, Deng X, Baker SC. Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. Proceedings of the National Academy of Sciences. 2020;117(14):8094-8103. Go to original source... Go to PubMed...
  38. Krishnan DA, Sangeetha G, Vajravijayan S, et al. Structure-based drug designing towards the identification of potential anti-viral for COVID-19 by targeting endoribonuclease NSP15. Informatics in medicine unlocked. 2020;20:100392. Go to original source... Go to PubMed...
  39. Littler DR, Gully BS, Colson RN, et al. Crystal structure of the SARS-CoV-2 non-structural protein 9, Nsp9. Iscience. 2020;23(7):01258. Go to original source... Go to PubMed...
  40. Kim Y, Jedrzejczak R, Maltseva NI, et al. Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Science. 2020;29(7):1596-1605. Go to original source... Go to PubMed...
  41. Matsuyama S, Kawase M, Nao N, et al. (2020). The inhaled corticosteroid ciclesonide blocks coronavirus RNA replication by targeting viral NSP15. BioRxiv. Go to original source...
  42. Chandra A, Gurjar V, Qamar I, et al. (2020). Identification of Potential Inhibitors of SARS-COV-2 Endoribonuclease (EndoU) from FDA Approved Drugs: A Drug Repurposing Approach to find Therapeutics for COID19. Journal of Biomolecular Structure and Dynamics, (just-accepted), 1-16. Go to original source... Go to PubMed...
  43. Siu KL, Yuen KS, Castano-Rodriguez C, et al. Severe acute respiratory syndrome Coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. The FASEB Journal. 2019;33(8):8865-8877. Go to original source... Go to PubMed...
  44. Shu C, Huang X, Brosius J, et al. (2020). Exploring potential super infection in SARS-CoV2 by genome-wide analysis and receptor-ligand docking.
  45. Konno Y, Kimura I, Uriu K, et al. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant. Cell reports. 2020;32(12):108185. Go to original source... Go to PubMed...
  46. Hachim A, Kavian N, Cohen CA, et al. ORF8 and ORF3b antibodies are accurate serological markers of early and late SARS-CoV-2 infection. Nature immunology. 2020;21(10):1293-1301. Go to original source... Go to PubMed...
  47. Li JY, Liao CH, Wang Q, et al. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus research. 2020;286:198074. Go to original source... Go to PubMed...
  48. Nelson CA, Pekosz A, Lee CA, et al. Structure and intracellular targeting of the SARS-coronavirus Orf7a accessory protein. Structure. 2005;13(1):75-85. Go to original source... Go to PubMed...
  49. Addetia A, Xie H, Roychoudhury P, et al. (2020). Identification of multiple large deletions in ORF7a resulting in in-frame gene fusions in clinical SARS-CoV-2 isolates. medRxiv. Go to original source...
  50. Astell CR, Holt RA, Jones SJ, et al. (2005). Genome organization and structural aspects of the SARS-related virus. In Coronaviruses with Special Emphasis on First Insights Concerning SARS (pp. 101-128). Birkhäuser Basel. Go to original source...
  51. Ivanov KA, Ziebuhr J. Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5'-triphosphatase activities. Journal of virology. 2004;78(14):7833-7838. Go to original source... Go to PubMed...
  52. Flower TG, Buffalo CZ, Hooy RM, et al. (2020). Structure of SARS-CoV-2 ORF8, a rapidly evolving coronavirus protein implicated in immune evasion. Biorxiv. Go to original source...
  53. Baruah C, Devi P, Sharma DK. (2020). Sequence analysis and structure prediction of SARS-CoV-2 accessory proteins 9b and ORF14: evolutionary analysis indicates close relatedness to bat coronavirus. BioMed research international, 2020. Go to original source...
  54. Andres AD, Feng Y, Campos AR, et al. (2020). SARS-CoV-2 ORF9c Is a Membrane-Associated Protein that Suppresses Antiviral Responses in Cells. bioRxiv.
  55. Michel CJ, Mayer C, Poch O, et al. Characterization of accessory genes in coronavirus genomes. Virology journal. 2020;17(1):1-13. Go to original source... Go to PubMed...
  56. Wu Q, Zhang Y, Lü H, et al. The E protein is a multifunctional membrane protein of SARS-CoV. Genomics, proteomics & bioinformatics. 2003;1(2):131-144. Go to original source... Go to PubMed...
  57. Gupta MK, Vemula S, Donde R, et al. (2020). In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. Journal of Biomolecular Structure and Dynamics, 1-11. Go to original source... Go to PubMed...
  58. Michel CJ, Mayer C, Poch O, et al. Characterization of accessory genes in coronavirus genomes. Virology journal. 2020;17(1):1-13. Go to original source... Go to PubMed...
  59. Jang KJ, Jeong S, Kang DY, et al. A high ATP concentration enhances the cooperative translocation of the SARS coronavirus helicase nsP13 in the unwinding of duplex RNA. Scientific reports. 2020;10(1):1-13. Go to original source... Go to PubMed...
  60. Zeng W, Liu G, Ma H, et al. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochemical and biophysical research communications. 2020;527(3):618-623. Go to original source... Go to PubMed...